МІНІСТЕРСТВО ОСВІТИ УРСР

КРИВОРІЗЬКИЙ ДЕРЖАВНИЙ ПЕДАГОГІЧНИЙ ІНСТИТУТ

НАУКОВІ ЗАПИСКИ

ВИПУСК II

«РАДЯНСЬКА ШКОЛА» Київ — 1957

НАУКОВІ ЗАПИСКИ КРИВОРІЗЬКОГО ДЕРЖАВНОГО ПЕДАГОГІЧНОГО ІНСТИТУТУ 1957 р. Випуск II

КАРЛИКОВ Д. М., СКРИШЕВСЬКИЙ А. Ф., КАРЛИКОВА Д. П.

РЕНТГЕНОГРАФІЧНЕ ДОСЛІДЖЕННЯ СТРУКТУРИ РІДКОЇ РТУТІ

Незважаючи на те, що ртуть неодноразово досліджувалась різними авторами рентгенографічно, дані про структуру рідкої ртуті продовжують бути не однозначними.

В одній з перших робіт по дослідженню структури рідкої ртуті Дебай і Менке [1] прийшли до висновку, що розташування атомів у рідкій ртуті визначається тільки вимогою щільної упаковки. В. І. Данилов і В. Є. Неймарк [2] дослідили розсіювання рентгенових променів рідкою ртуттю при зниженні її температури до точки кристалізації. Вони показали, що ртуть при цьому зазнає структурних змін. Розподіл атомів ртуті біля точки кристалізації переходить з щільно упакованого, характерного для рідкої ртуті при високих температурах, в новий, відповідний структурі, близькій до ромбоедричної гратки твердої ртуті.

Бойд і Уокегам [3], а потім Кемпбелл і Гільдебранд [4] одержали криві розподілу рідкої ртуті, які істотно відрізняються від кривої розподілу Дебая і Менке. За даними Кемпбелла і Гільдебранда, рідка ртуть має атомну структуру, яка відрізняється як від структури «ідеальної» щільно упакованої рідини, так і від структури твердої ртуті.

В зв'язку з тим, що дані різних авторів, які досліджували структуру рідкої ртуті, виявились розбіжними, є інтерес виконати дану роботу, застосувавши більш досконалу методику експерименту. Це тим більш стало необхідним, поскільки нами розпочата робота по дослідженню структури деяких рідких амальгам.

Рентгенівські знімки одержані в вакуумній камері з вільної поверхні рідкої ртуті, в мідному випромінюванні, монохроматизованому при допомозі кварцового зігнутого кристала. Трубка і камера були встановлені на амортизованій дерев'яній підставці, укріпленій на фундаментальній стіні, що дозволило звести до мінімуму тремтіння поверхні ртуті. Для дослідження була взята ртуть, яка старанно очищалась шляхом триразової перегонки в вакуумі.

Ртуть вміщували в керамічну чашечку. Центрівка зразка в камері, а також спостереження за положенням ртуті під час зйомки здійснювались за допомогою мікроскопа «МІР-1», прикріпленого до бокової стінки камери. Поверхня зразка освітлюваласьрефлектором через віконце в камері. Спеціальне пристосування в камері дозволяє плавно переміщати зразок вверх або вниз відносно падаючого пучка. Все це дає можливість стежити за тим, щоб в процесі зйомки поверхня ртуті знаходилась в строго заданому положенні.

Рентгенографування проводилось при кімнатній температурі. Було одержано кілька рентгенограм з різних зразків ртуті. Експозиція при одержанні рентгенограм в камері радіусом 38 мм складала в середньому 24 години при навантаженні на трубку в-20 ма и 38 кв.

Рис. 1. Мікрофотометрична крива рентгенограми рідкої ртуті.

На рис. 1 наведена одна з одержаних мікрофотограм. Мікрофотограми одержані шляхом мікрофотометрування рентгенограм на самореєструючому мікрофотометрі «МФ-4».

Мікрофотометричні криві використовувались для побудови експериментальних кривих інтенсивностей. При цьому вносились поправки на вбирання і фактор поляризації.

Облік поляризації провадився відповідно до виразу

$$P = \frac{1 + \cos^2 2\vartheta 2 \cos^2 2\psi}{2}, \qquad (1)$$

де ψ — кут відбивання від грані (1340) кристала кварцу, 28 — кут розсіювання для рідини.

Оскільки меніск досліджуваного тіла мав майже плоску поверхню, для розрахунку поправки на вбирання використовувалась формула:

$$A = 2 \frac{\sin (2\vartheta - \alpha)}{\sin \alpha + \sin (2\vartheta - \alpha)}, \qquad (2)$$

150

ле *а* — кут між напрямом падаючого монохроматичного пучка та горизонтальною поверхнею.

Після поправок на поляризацію і вбирання криві інтенсивності приводилися до електронних одиниць. Критерієм правильного приведення була рівність нулю інтеграла

$$\int_{0}^{\infty} s^2 \cdot i(s) ds.$$

З експериментальних значень інтенсивності, виражених в електронних одиницях, віднімалось некогерентне розсіювання і будувались криві I.e.

Відповідно теорії Дебая, Церніке і Прінса кутова залежність інтенсивності розсіювання рентгенових променів може бути виражена так:

$$I(s) = N f^{2} \left\{ 1 + \int_{0}^{\infty} 4\pi r^{2} \left[\rho(r) - \rho_{0} \right] \frac{\sin sr}{sr} dr \right\}, \qquad (3)$$

де I(s) — експериментальна інтенсивність когерентного розсіювання.

№ — число атомів в розсіюючому об'ємі,
ƒ — атомний фактор,

Ро — середня густина атомів рідини,

p(r) — радіальна функція розподілу, визначена таким чином, що величина $4\pi r^2 \rho(r) dr$ являє собою середнє число атомів, центри яких знаходяться у кульовому прошарку між сферами з радіусами r і r + dr, описаними навколо вибраного атома:

$$s=4\pi\,\frac{\sin\,\vartheta}{\lambda},$$

де θ — половина кута розсіювання, λ — довжина хвилі рентгенівського випромінювання.

Використовуючи інтегральну теорему Фур'є, вираз (3) можна записати так:

$$4\pi r^{2}\rho(r) = 4\pi r^{2}\rho_{0} + \frac{2r}{\pi}\int_{0}^{\infty} s \cdot i(s) \sin srds, \qquad (4)$$

ле

$$i(s) = \frac{I(s)}{Nf^2} - 1.$$

Вираз (4) в правій частині має величини, визначені з досвіду (з кривої інтенсивності). Таким чином, використовуючи його і експериментальну криву інтенсивності, можна побудувати криву $4\pi r^2 \rho(r)$ для досліджуваної речовини, яка визначає радіальний розподіл атомів в ньому. Розрахунок інтеграла, який входить у вираз (4), проводився, відповідно до тригонометричного методу, розробленого А. С. Лашко [5].

На рис. 2 наведена експериментальна крива інтенсивності рідкої ртуті, виражена в електронних одиницях і виправлена на поляризацію і вбирання. Вона одержана з рентгенограми, знятої з поверхні рідкої ртуті, при кутові між напрямом падаючого монохроматичного пучка і горизонтальною поверхнею, рівному 5°.

На кривій виразно виявлено три максимуми інтенсивності, положення яких в $\frac{\sin \vartheta}{\lambda}$ відповідно дорівнюють: 0,193; 0,360; 0,525. Зіставлення одержаних результатів з результатами інших авторів наведені в табл. 1.

Таблиця 1

Автор	Метод	Положевня максимумів інтенсивності				
Прінс [6]	рентгенографічний		0,180	0,354	0,495	
Дебай і Менке	21		0,163	0,358	0,520	
Данилов і Неймарк	37		0,189	0,359	0,538	
Бойд і Уокегам	"	0,115	0,195	0,335	0,535	
Кемпбелл і Гіль- дебранд	29	0,103	0,191	0,366	0,510	
Дженінгс (8)	22		0,185	0,365	0,530	
Вайніард [7]	нейтронографічний		0,194	0,361	0,523	
Наші результати	рентгенографічний	1	0,193	0,360	0,525	

Кутове положення максимумів інтенсивності

З таблиці видно, що Прінс, Дебай і Менке, Данилов і Неймарк, Дженінгс спостерігали З максимуми на кривій інтенсивності, в той час як в працях Бойда і Уокегама, Кемпбелла і Гільдебранда вказаний ще внутрішній максимум інтенсивності в області малих кутів розсіювання. Нам цей максимум виявити не вдалось, хоч і було одержано велику кількість знімків в різних умовах.

Положення максимумів інтенсивності рідкої ртуті, одержане в нашій роботі рентгенографічним методом, добре співпадає з положенням максимумів інтенсивності ртуті, одержаних в 1954 р. Вайніардом [7] методом дифракції нейтронів. Оскільки коефіцієнт вбирання нейтронів в ртуті менший за коефіцієнт вбирання рентгенових променів, то в випадку дифракції нейтронів вдалось одержати криву інтенсивності в більшому інтервалі кутів розсіювання.

Вайніард в своїй праці також звертає увагу на відсутність внутрішнього максимуму на кривій інтенсивності рідкої ртуті. На це ж звертають увагу також Остер і Релей. На рис. 3 показана крива s. *i*(s) для рідкої ртуті, одержана з кривої рис. 2, яка використовується для обчислення функції атомного розподілу.

На рис. 4 представлена функція атомного розподілу, одержана нами для рідкої ртуті. По осі абсциє відкладено r, а на осі ординат $4\pi r^2 \rho(r)$. Вертикальними відрізками позначені положення координаційних сфер в ромбоедричній гратці твердої ртуті. Довжина відрізків відповідає числу атомів на сфері (табл. 2).

Таблиця 2

№ сфер	1	1 2,	3	4	5	6	7	8	9
r в Å	3,00	3,43	4,58	4,88	5,72	5,96	6,66	6,85	6,88
Координаційне число z	6	6	6	6	12	12	2	6	12

Розподіл атомів кристалічної ртуті

Крива $4\pi r^2 p(r)$ осцилує відносно середньої атомної густини і співпадає з останньою при великих значеннях $4\pi r^2 p_0$. 1-й максимум кривої атомного розподілу рідкої ртуті захоплює область r, в якій розміщені перша і друга координаційні сфери в кристалічній ртуті. Його положення вказує на те, що найбільш імовірна віддаль між найближчими атомами рідкої ртуті дорівнює r = 3,13 Å (у Кемпбелла і Гільдебранда r = 3,00 Å).

Рис. 5. Функція атомного розподілу рідкої ртуті, одержана нейтронографічно в роботі Ванніарда [7].

Координаційне число для рідкої ртуті, знайдене по площі під першим максимумом, дорівнює 8,0 одиниць (у Кемпбелла і Гільдебранда — 6).

Крива атомного розподілу рідкої ртуті, одержана нами, ідентична кривій атомного розподілу, одержаній для рідкої ртуті нейтронографічно Вайніардом [7].

Остання для порівняння наводиться на рис. 5. Координаційнечисло, одержане Вайніардом, дорівнює 8,3 одиниці, а радіус першої координаційної сфери рідкої ртуті — 3,13 А.

Обидві криві $4\pi r^2 \rho(r)$ (рис. 4 і 5) фіксують також концентрацію атомів у районі 4 А, 5 А і 6 А.

Якщо співставити положення максимумів з вертикальними прямими, то прийдемо до висновку, що не всі положення максимумів кривої розподілу рідкої ртуті відповідають положеннюсфер в кристалічній ртуті. Так, положення другого максимуму кривої 4πr²ρ(r) для рідкої ртуті не відповідає якій-небудь координаційній сфері в кристалічній ртуті.

Далі, площа під першим максимумом дорівнює 8,0, в той час як кристалічної — 6 + 6.

Таким чином, на підставі аналізу літературного матеріалу і даних цієї роботи можна прийти до висновку, що розташування атомів в рідкій ртуті не повністю співпадає з положенням їх в твердій фазі. Найбільш імовірною віддаллю між найближчими атомами в рідкій ртуті слід вважати 3,13 А, а середнє координаційне число — рівним 8.0.

ЛІТЕРАТУРА

1. Debye P. und Menke H., Physik, Z, 31, 797, 1930. 2. Данилов В. І. и Неймарк В. Є., ЖэТФ, вып. 8, 724, 1935. 3. Boyd R. N. and Wakeham H. R. R., J. Chem. Phys., 7, 958, 1939: 4. Campbell I. A. and Hildebrand J. H., J. Chem. Phys., 11, 330, 1943.

5. Лашко А. С., Допов. АН УРСР, № 3, 150, 1953. 6. Prins J. A., Physica, 6, 315, 1926. 7. Vineyard G. H., J. Chem. Phys., 22, 1666, 1954. 8. Oster G. and Riley D. P., Acta Cryst., 5, 1, 1952.