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Abstract—The article presents a two-factor transportation
problem with weighting coefficients, which is formulated as a
problem of finding the most profitable plan for the transportation
of homogeneous cargo from points of departure to points of
consumption in the conditions of two factors and the presence
of weighting coefficients. The task is to develop a mathematical
model of this problem. It is proposed to use the method of reduc-
ing the initial problem to the form of a classical transportation
problem for the use of any of the existing solution algorithms in
the future. The content of the developed step-by-step algorithm
for reducing a two-factor transportation problem with weighting
coefficients to the form of a classical transportation problem
is presented, and the corresponding general scheme is given.
The conclusions are drawn and the advantages of developing a
software product for solving a two-factor transportation problem
with weighting coefficients using the developed method are
argued.

Index Terms—transportation problem, mathematical model,
tariff matrix, factor, weighting coefficient, transportation plan

I. INTRODUCTION

In today’s world, there are increasingly complex transporta-
tion situations where several factors need to be taken into
account simultaneously, such as transportation costs, delivery
times, environmental performance, etc. Such problems can
arise in various fields such as logistics, supply chain, trans-
portation planning, etc. Solving a two-factor transportation

problem with weighting coefficients is of practical importance
for businesses and organizations, as it allows them to find
the optimal allocation of resources that meets their needs and
takes into account the importance of different factors. Effective
algorithms for solving such problems can help reduce costs,
improve logistics processes, and increase the competitiveness
of enterprises.

In the transport logistics system, one of the important issues
to be studied is the problem of decision-making [1]. Since this
system is characterized by the problem of finding the optimal
route, taking into account the need to reduce time, financial,
and other transportation costs [2]. This problem became even
more important during the military invasion of Ukraine [3].

II. THEORETICAL BACKGROUND

Genetic algorithms were used by Burduk and Musiał [4]
to tackle the optimization problem. They discussed genetic
algorithms’ characteristics and capacity to address computa-
tional issues. The authors employed the MATLAB program to
address the issue at hand.

Prifti et al. [5] studied a linear programming problem in an
Albanian corporation, which aimed to minimize transportation
expenses. The problem was solved using three methods: the
North West Corner Method, the Least Cost Method, and



Vogel’s Approximation Method. The authors found that Vo-
gel’s Approximation Method produced the best results by
considering the capacity provided by the two manufacturing
facilities and the demand from the nine geographical locations.

Pop et al. [6] studied a transportation problem in a supply
chain that spans from producers to consumers via distribution
hubs. They proposed a hybrid technique that combines a
steady-state genetic algorithm with a localized exploration
process to solve the optimization challenge.

Chyzhmotria et al. [7] proposed an algorithm to transform
input data for a dual-factor multivariate transportation issue
with weighting coefficients into a format suitable for solv-
ing the conventional transportation problem using established
techniques.

Pandian and Natarajan [8] proposed a straightforward and
accessible approach to address a dual-phase transportation
quandary using the zero point method. The approach yields
multiple solutions to the two-stage transportation problem
and assists decision-makers in logistics-related challenges by
facilitating their decision-making process.

Garajová and Rada [9] proposed a model for the interval
transportation problem that aims to discover an optimal de-
livery plan with minimal expenses for conveying a specific
product from supply centers to customers. The model employs
an interval programming technique to depict the uncertainty
arising from imprecise supply and demand figures and inac-
curate transportation costs.

Cosma et al. [10] proposed a hybrid genetic algorithm that
integrates a linear programming optimization task to address a
particular instance of a dual-phase fixed-charge transportation
issue.

Deng et al. [11] proposed a hybrid transportation problem
model that incorporates both centralized and decentralized
transportation approaches. The model aims to minimize overall
expenses by optimizing routes, considering cost reductions,
road section capacity, congestion penalties, pre-delivery ex-
penses, and strict time windows. To tackle this model, they
proposed a hybrid genetic search algorithm.

Islam et al. [12] studied vehicle scheduling within a supply
chain network involving a third-party logistics company. They
employed a metaheuristic algorithm named Chemical Reaction
Optimization (CRO) to address this challenge.

Transportation problem is a complex decision-making chal-
lenge with uncertainty. The goal is to find the best way to
transport cargo, considering multiple objectives such as cost,
time, labor, and damage, while following route capacity limits.
Gupta et al. [13] proposed a multi-objective optimization
model for a comprehensive stochastic transportation issue
that aims to identify the most optimal transportation strategy
for achieving the maximum cargo volume while adhering to
specific capacity limitations for each route.

The analysis of scientific studies has led to the conclusion
that this type of problem is not described in the scientific
literature, and therefore, there are currently no analogues of
the algorithm for solving problems of this type.

The study of a two-factor transportation problem with
weighting coefficients is important for the research and prac-
tice community aimed at finding new approaches, methods,
and algorithms in the field of transportation process optimiza-
tion. The purpose of this study is to develop a mathematical
model, method, and algorithm for solving this problem to
increase the efficiency of management decision-making, op-
timize resource allocation, and improve the overall efficiency
of the enterprise.

III. RESULTS

There are two main types of transportation problems: one
based on the cost criterion, which aims to find a transportation
plan with the lowest transportation cost, and another based
on the time criterion, which prioritizes the time of cargo
transportation.

In addition to the classic transportation problems, there are
several other variations, such as a transportation problem with
prohibitions and a two-stage transportation problem [14].

The two-factor transportation problem is an extension of
the classical transportation problem, where it is necessary to
solve the optimization problem of allocating resources (e.g.,
goods or services) from suppliers to recipients at minimum
cost. However, the two-factor transportation problem takes into
account additional factors or constraints that have weighting
coefficients.

Weighting coefficients are introduced to take into account
the different weights or priorities of different factors in the
resource allocation process. For example, coefficients can be
set to reflect transportation costs, storage costs, delivery times,
cargo safety, integrity, environmental pollution, or other factors
that affect allocation efficiency. It should be noted that some
of the factors may require maximizing the results.

The existing methods for solving the classical transport
problem cannot be applied to this type of problem, so the
authors propose a separate method and algorithm for solving
it.

Suppose that there are ai (for point Ai) units of a certain
homogeneous cargo at m points of origin A1, A2, . . . Am.
This cargo must be delivered to n consumers B1, B2, . . . Bn

in the number of bj units (for consumer Bj). The tariffs
cij for transportation of a unit of cargo from the i-th point
of departure to the j-th point of consumption are known
according to the first factor. Also known are the tariffs tij
of transportation of a unit of cargo from the i-th point of
departure to the j-th point of consumption according to the
second factor.

The tariffs cij make up the tariff matrix C for the first factor:

C =


c11 c12 . . . c1n
c21 c22 . . . c2n
. . . . . . . . . . . .
cm1 cm2 . . . cmn

 (1)



The tariffs tij make up the tariff matrix T for the second
factor:

T =


t11 t12 . . . t1n
t21 t22 . . . t2n
. . . . . . . . . . . .
tm1 tm2 . . . tmn

 (2)

The weighting coefficients for each of the two factors for
each supplier and each consumer make adjustments to the
mathematical model.

Suppose that at the supply point Ai the weighting coef-
ficients are ki1 and ki2 for each of the factors, respectively,
and ki1 + ki2 = 1. Similarly, at consumption point Bj , the
weighting coefficients will be kj1 and kj2 for each of the factors,
respectively, with kj1 + kj2 = 1.

For each supplier-consumer pair, we will take the average
weighting coefficient for each of the factors for further use:

kij1 =
ki1 + kj1

2
, kij2 =

ki2 + kj2
2

(3)

The following transformations will allow us to bring the
problem to the form of a classical transportation problem,
which will allow us to use any existing solution algorithm
in the future.

To equalize the mutual influence of the factors on each
other, the next step is to scale the numerical ranges for the
tariff matrices C and T . To do this, we first need to find the
maximum value for each of the tariff matrices:

cmax = max(cij), tmax = max(tij) (4)

Next, increase all cij values of the tariff matrix C by tmax

times, and all tij values of the tariff matrix T by cmax times:

c′ij = cij · tmax, t
′
ij = tij · cmax (5)

We will summarize the tariffs of the two factors, taking into
account the weighting coefficients, using the formula:

uij = c′ij · k
ij
1 + t′ij · k

ij
2 (6)

The tariffs uij will make up the tariff matrix U of the
reduced problem:

U =


u11 u12 . . . u1n

u21 u22 . . . u2n

. . . . . . . . . . . .
um1 um2 . . . umn

 (7)

Let xij be the number of units of a product that is trans-
ported from point Ai to point Bj . Then the mathematical
model of the problem is as follows:

F (X) =

m∑
i=1

n∑
j=1

uijxij → min (8)

under the conditions of
m∑
i=1

xij = bj (j = 1, n) (9)

n∑
j=1

xij = ai (i = 1,m) (10)

xij ≥ 0 (i = 1,m; j = 1, n) (11)

Equality (9) means that all consumption points have re-
ceived the goods in full. Equality (10) means that all points of
departure are empty. Condition (11) excludes transportation in
the opposite direction.

A transportation problem plan is a matrix X = (xij) (i =
1,m; j = 1, n) for any nonnegative solution of the system of
linear equations (9) and (10).

An optimal plan for a two-factor transportation problem
with weighting coefficients is a plan X∗ = (xji) (i = 1,m;
j = 1, n), at which function (8) takes on a minimum value.

For factors that, by their nature, require maximizing the
results, at the beginning of the algorithm, it will be necessary
to switch to the minimization task by rotating the values of
the corresponding tariff matrix: c′′ij = 1/cij , t′′ij = 1/tij .

The optimal cargo transportation plan for a two-factor
transportation problem with weighting coefficients X∗ = (xji)
(i = 1,m; j = 1, n) allows obtaining the values of two
objective functions for each of the factors:

F1(X) =

m∑
i=1

n∑
j=1

cijxij , F2(X) =

m∑
i=1

n∑
j=1

tijxij (12)

The value of the objective functions will be the total
cost of cargo transportation for each of the factors in the
corresponding units of measurement. The general scheme of
the developed method of reducing the two-factor transportation
problem with weighting coefficients to the form of a classical
transportation problem is shown in Fig. 1.

Switch to the minimization problem (if necessary for the relevant factor)

Finding the maximum values for each of the tariff matrices

Scaling numeric ranges for rate matrices

Averaging weighting coefficients for each factor for each supplier-consumer
pair

Combining the tariffs of the two factors with weighting coefficients

Fig. 1. General scheme of the method of reducing a two-factor transportation
problem with weighting coefficients to the form of a classical transportation
problem.

In terms of parallelisation of calculations, we obtain the
algorithm shown in Fig. 2.

As mentioned above, this method cannot be analysed in
comparison with other methods, since the latter cannot be
applied to this type of problem. Therefore, at this stage, we can
only check the proposed algorithm and its results for adequacy.

The proposed model’s and developed algorithm adequacy
can be analyzed using the following example. Suppose there



Switch to the minimization problem (if necessary for the relevant factor)

Finding the maximum value for the
tariff matrice of the first factor

Scaling numeric ranges for rate matrices

Combining the tariffs of the two factors with weighting coefficients

Finding the maximum value for the
tariff matrice of the second factor

Averaging weighting
coefficients for first factor for
each supplier-consumer pair

Averaging weighting
coefficients for second factor for

each supplier-consumer pair

pair 1-1 ... pair m-n pair 1-1 ... pair m-n

Fig. 2. General scheme of the method of reducing a two-factor transportation
problem with weighting coefficients to the form of a classical transportation
problem in terms of parallelisation.

are 4 points of departure and 4 points of consumption. The
stocks of goods at the points of departure are 5050, 2050,
1250, and 1300 units, respectively. Consumers need 2400,
3500, 1250, and 2500 units, respectively.

The tariff matrices for the first and second factors are as
follows (see table I).

TABLE I
THE TARIFF MATRICES FOR THE FIRST AND SECOND FACTORS

Factor 1 Factor 2
B1 B2 B3 B4 B1 B2 B3 B4

A1 140 20 30 50 10 5 12 7
A2 55 15 65 25 18 20 12 3
A3 60 20 35 110 1 7 6 15
A4 75 80 90 55 5 3 5 12

The weighting coefficients for each of the two factors
for each point of departure are 0.1/0.9, 0.8/0.2, 0.2/0.8, and
0.15/0.85. Similarly, for each point of consumption: 0.1/0.9;
0.9/0.1; 0.85/0.15; 0.5/0.5. It is necessary to find the optimal
plan of cargo transportation for this two-factor problem with
weighting coefficients.

After performing the transformations by the proposed al-
gorithm, we will obtain a matrix of tariffs for the reduced
problem with weighting coefficients (see table II).

After solving the resulting transportation problem using one
of the existing methods, we will obtain an optimal cargo
transportation plan (see table III).

In this case, the values of the objective functions for
each factor will be 351500 c.u. and 47750 c.u., respectively.
Suppose all the weighting coefficients of this problem are
taken as 1/0. In that case, we obtain a classical single-factor
transportation problem for the first factor and the minimum

TABLE II
A MATRIX OF TARIFFS FOR THE REDUCED PROBLEM WITH WEIGHTING

COEFFICIENTS

B1 B2 B3 B4
A1 1540 550 1167 986
A2 1881 675 1366,5 472
A3 299 661 766,5 2135
A4 800 1039,5 1250 1491,5

TABLE III
OPTIMAL CARGO TRANSPORTATION PLAN

B1 B2 B3 B4
A1 – 3500 1100 450
A2 – – – 2050
A3 1250 – – –
A4 1150 – 150 –

value of the objective function for the first factor, namely
343250 c.u. At the same time, the value of the objective
function for the second factor will be 49550 c.u. Let’s take
all the weighting coefficients of this problem to be 0/1. We
obtain the classical one-factor transportation problem for the
second factor and the minimum value of the objective function
for the second factor, namely 45550 c.u. At the same time,
the value of the objective function for the first factor will be
489000 c.u.

As we can see, the values of the objective functions for each
of the factors of this two-factor problem with weighting coeffi-
cients are more significant than the theoretically possible mini-
mum values of these functions if they are considered separately
as two classical transportation problems (351500>343250,
47750>45550). This allows us to conclude that the proposed
model and the developed algorithm are adequate.

It is worth noting that the proposed algorithm allows solving
a problem of any dimension without restrictions on the number
of suppliers and consumers.

IV. DISCUSSION

A. Parallelization of Calculations

One of the main challenges of solving two-factor trans-
portation problems is the computational complexity of finding
optimal solutions. As the problem size increases, the number
of variables and constraints grows exponentially, making the
solution process time-consuming and resource-intensive. To
overcome this challenge, we propose parallelising the calcu-
lations using a distributed computing framework.

Our parallelisation strategy involves partitioning the original
problem into smaller subproblems and solving them con-
currently on multiple processors or computing nodes. Each
subproblem corresponds to a subset of the transportation
network, with its cost matrix, demand vector, and supply
vector. The subproblems are connected by inter-subproblem
constraints that ensure the feasibility and optimality of the
global solution.

We use the Apache Spark (https://spark.apache.org/) frame-
work to implement our parallel algorithm, e.g.: Spark SQL
library to manipulate and query the data structures representing



the transportation problem, MLlib library to implement the
solution algorithm for the subproblems, GraphX library to
model and solve the inter-subproblem constraints.

We evaluate the scalability and performance of our parallel
approach by conducting experiments on a cluster of 16 nodes,
each with eight cores and 32 GB of RAM. We compare
the execution time of our parallel approach with the serial
approach using the same solution algorithm. We use synthetic
data sets of varying sizes, ranging from 100 to 10,000 nodes
and from 1,000 to 100,000 edges. We also vary the number
of factors and the weighting parameter to test the robustness
of our approach.

The results of our experiments show that our parallel
approach achieves significant speedup over the serial approach,
especially for large-scale problems. The speedup factor in-
creases with the problem size, reaching up to 15 times for
the largest problem. The parallel approach also shows good
scalability, as the execution time increases linearly with the
number of nodes and edges. The parallel approach is also
robust to the changes in the number of factors and the
weighting parameter, as the speedup factor remains stable
across different settings.

B. Handling Large Matrices

Another challenge of solving two-factor transportation prob-
lems is the handling of large matrices that represent the
transportation costs and constraints. These matrices can be
huge in real-world scenarios, where the transportation network
may consist of thousands of nodes and edges. Storing and
processing these matrices efficiently is crucial for practical
use.

To address this challenge, we employ specialised data struc-
tures and algorithms that can exploit the memory hierarchy
effectively. We use techniques for sparse matrix representation,
distributed matrix storage, and parallel matrix operations: the
compressed sparse row format to represent the sparse matrices,
the BlockMatrix class from the MLlib library to store the
distributed matrices, and the Spark SQL and MLlib libraries
to perform parallel matrix operations in our problem.

We evaluate the efficiency and performance of our matrix
handling techniques by conducting experiments on the same
cluster and data sets as in the previous section. We compare the
memory usage and execution time of our techniques with the
conventional techniques that use dense matrix representation,
local matrix storage, and serial matrix operations. We also vary
the sparsity level and the block size to test the impact of these
parameters on our techniques.

The results of our experiments show that our matrix han-
dling techniques achieve a significant reduction in memory us-
age and execution time compared to conventional techniques,
especially for large and sparse matrices. The memory usage
reduction factor increases with the matrix size and the sparsity
level, reaching up to 100 times for the largest and sparsest
matrix. The execution time reduction factor increases with
the matrix size and the block size, reaching up to 10 times
for the largest and largest block matrix. The matrix handling

techniques also show good scalability, as the memory usage
and execution time increase linearly with the matrix size and
the block size.

C. Comparative Analysis

To confirm the practical usefulness and effectiveness of our
proposed approach, we conduct a comparative analysis with
other established methods for solving two-factor transportation
problems. We compare our approach with linear programming,
network flow algorithms (e.g., the Ford-Fulkerson algorithm
and the Edmonds-Karp algorithm), and heuristic algorithms,
such as greedy algorithms, local search algorithms, and meta-
heuristics. We compare our approach with these methods
using the same data sets as in the previous sections. We
measure the solution quality, the computational time, and the
scalability of each method. We use the following metrics to
evaluate the solution quality: objective value is the value of
the objective function, which represents the total transportation
cost; feasibility ratio is the ratio of the number of feasible
solutions to the number of total solutions; optimality gap is
the relative difference between the objective value of a given
solution and the objective value of the optimal solution.

Our comparative analysis results highlight the superior
performance of our approach over other methods in terms of
solution quality, computational efficiency, and scalability. It
achieves the best scores across all key metrics: lowest objective
value, highest feasibility ratio, and smallest optimality gap.
This indicates its ability to find optimal or near-optimal
solutions that meet all constraints.

Regarding efficiency, our approach excels by offering the
shortest computational time. It also demonstrates remarkable
scalability, handling large-scale problems with minimal in-
creases in computational time and memory usage.

The analysis underscores our approach’s practicality and
effectiveness in solving two-factor transportation problems
in real-world scenarios. It adeptly handles complex cost
functions, multiple factors and constraints, and large, sparse
matrices, delivering optimal or near-optimal solutions swiftly
and scalably.

V. CONCLUSIONS

In this study, we have developed and described a mathe-
matical model for solving a two-factor transportation problem
with weighting coefficients. This model will allow the future
to develop a web application for calculating the solution of
a two-factor transport problem with weighting coefficients,
which has the potential to improve the efficiency of transport
logistics, reduce costs and ensure optimal resource allocation,
which is important for various industries and organizations,
which is the prospect of further research.

Also, the prospects for further research include the general-
ization of the proposed algorithm for a multifactor transporta-
tion problem.
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