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Abstract. This article demonstrates the possibility of constructing indicators of 
critical and crash phenomena in the volatile market of cryptocurrency. For this 
purpose, the methods of the theory of complex networks have been used. The 
possibility of constructing dynamic measures of network complexity behaving in 
a proper way during actual pre-crash periods has been shown. This fact is used 
to build predictors of crashes and critical events phenomena on the examples of 
all the patterns recorded in the time series of the key cryptocurrency Bitcoin, the 
effectiveness of the proposed indicators-precursors of these falls has been 
identified. 
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1 Introduction 

The instability of global financial systems with regard to normal and natural 
disturbances of the modern market and the presence of poorly foreseeable financial 
crashes indicate, first of all, the crisis of the methodology of modeling, forecasting and 
interpretation of modern socio-economic realities. The doctrine of the unity of the 
scientific method states that for the study of events in socio-economic systems the same 
methods and criteria as those used in the study of natural phenomena are applicable. 
Significant success has been achieved within the framework of interdisciplinary 
approaches and the theory of self-organization – synergetics. The modern paradigm of 
synergetics is a complex paradigm associated with the possibility of direct numerical 
simulation of the processes of complex systems evolution, most of which have a 
network structure, or one way or another can be reduced to the network. The theory of 
complex networks studies the characteristics of networks, taking into account not only 
their topology, but also statistical properties, the distribution of weights of individual 
nodes and edges, the effects of dissemination of information, robustness, etc. [1-4]. 

Complex systems are systems consisting of a plurality of interacting agents 
possessing the ability to generate new qualities at the level of macroscopic collective 
behavior, the manifestation of which is the spontaneous formation of noticeable 
temporal, spatial, or functional structures. As simulation processes, the application of 
quantitative methods involves measurement procedures, where importance is given to 
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complexity measures. I. Prigogine notes that the concepts of simplicity and complexity 
are relativized in the pluralism of the languages descriptions, which also determines the 
plurality of approaches to the quantitative description of the complexity phenomenon 
[5]. Therefore, we will continue to study Prigogine’s manifestations of the system 
complexity, using the current methods of quantitative analysis to determine the 
appropriate measures of complexity. 

The key idea here is the hypothesis that the complexity of the system before the 
crashes and the actual periods of crashes must change. This should signal the 
corresponding degree of complexity if they are able to quantify certain patterns of a 
complex system. Significant advantage of the introduced measures is their dynamism, 
that is, the ability to monitor the change in time of the chosen measure and compare it 
with the corresponding dynamics of the output time series. This allowed us to compare 
the critical changes in the dynamics of the system, which is described by the time series, 
with the characteristic changes of concrete measures of complexity. It turned out that 
quantitative measures of complexity respond to critical changes in the dynamics of a 
complex system, which allows them to be used in the diagnostic process and prediction 
of future changes. 

Cryptocurrency market is a complex, self-organized system, which in most cases can 
be considered either as a complex network of market agents, or as an integrated output 
signal of such a network – a time series, for example, prices of individual 
cryptocurrency. Moreover, in the cryptocurrency market, to some extent, the 
blockchain technology is tested in general. Thus the cryptocurrency prices exhibit such 
complex volatility characteristics as nonlinearity and uncertainty, which are difficult to 
forecast and any results obtained are uncertain. Therefore, cryptocurrency price 
prediction remains a huge challenge. 

Unfortunately, the existing nowadays classical econometric [6] and modern methods 
of prediction of crisis phenomena based on machine learning methods [7-11] do not 
have sufficient accuracy and reliability of prediction. 

Thus, lack of reliable models of prediction of time series for the time being will 
update the construction of at least indicators which warn against possible critical 
phenomena or trade changes etc. This work is dedicated to the construction of such 
indicators-precursors based on the theory of complex networks and adapt them in order 
to study the critical and crash phenomena of cryptomarket. 

The paper is structured as follows. Section 2 describes previous studies in these 
fields. Section 3 presents classification of crashes and critical events on the Bitcoin 
market during the entire period (16.07.2010 – 08.12.2018). Network measures of 
complexity and their effectiveness as indicators of cryptomarket crashes are presented 
in Section 4. And finally, we discuss our results in Section 5. 

2 Analysis of previous studies 

Throughout the existence of Bitcoin, its complexity became much larger. Crashes and 
critical events that took place on this market as well as the reasons that led to them, did 
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not go unheeded. We determined that there are a lot of articles and papers on that topic 
which we will demonstrate. 

Donier and Bouchaud [12] found that the market microstructure on Bitcoin 
exchanges can be used to anticipate illiquidity issues in the market, which lead to abrupt 
crashes. They investigate Bitcoin liquidity based on order book data and, out of this, 
accurately predict the size of price crashes. 

Taking to the account studies on network analysis we can notice different papers on 
this topic [13-15]. Di Francesco Maesa et al. [13] have performed on the users’ graph 
inferred from the Bitcoin blockchain, dumped in December 2015, so after the 
occurrence of the exponential explosion in the number of transactions. Researchers first 
present the analysis assessing classical graph properties like densification, distance 
analysis, degree distribution, clustering coefficient, and several centrality measures. 
Then, they analyze properties strictly tied to the nature of Bitcoin, like rich-get-richer 
property, which measures the concentration of richness in the network. Alexandre 
Bovet et al. [14] analyzed the evolution of the network of Bitcoin transactions among 
users and built network-based indicators of Bitcoin bubbles. 

Authors [15] consider the history of Bitcoin and transactions in it. Using this dataset, 
they reconstruct the transaction network among users and analyze changes in the 
structure of the subgraph induced by the most active users. Their approach is based on 
the unsupervised identification of important features of the time variation of the 
network. Applying the widely used method of principal component analysis to the 
matrix constructed from snapshots of the network at different times, they show how 
changes in the network accompany significant changes in the price of Bitcoin. 

Separately, it is necessary to highlight the work of Didier Sornette [16; 17], who 
built a precursor of crashes based on the generation of so-called log-periodic 
oscillations by the pre-crashing market. However, the actual collapse point is still badly 
predicted. 

Thus, construction of indicators-precursors of critical and crash phenomena in the 
cryptocurrency market remains relevant. 

3 Data 

Bitcoin, despite its uncertain future, continues to attract investors, crypto-enthusiasts, 
and researchers. Being historically proven, popular and widely used cryptocurrency for 
the whole existence of cryptocurrencies in general, Bitcoin began to produce a lot of 
news and speculation, which began to determine its future life. Similar discussions 
began to lead to different kinds of crashes, critical events, and bubbles, which 
professional investors and inexperienced users began to fear. Thus, we advanced into 
action and set the tasks: 

1. Classification of such bubbles, critical events and crashes. 
2. Construction of such indicators that will predict crashes, critical events in order to 

give investors and ordinary users the opportunity to work in this market. 
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At the moment, there are various research works on what crises and crashes are and 
how to classify such interruptions in the market of cryptocurrencies. Taking into 
account the experience of previous researchers [18-21], we have created our 
classification of such leaps and falls, relying on Bitcoin time series during the entire 
period (16.07.2010 – 08.12.2018) of verifiable fixed daily values of the Bitcoin price 
(BTC) (https://finance.yahoo.com/cryptocurrencies). 

For our classification, crashes are short, time-localized drops, with strong losing of 
price per each day, which are formed as a result of the bubble. Critical events are those 
falls that could go on for a long period of time, and at the same time, they were not 
caused by a bubble. The bubble is an increasing in the price of the cryptocurrencies that 
could be caused by certain speculative moments. Therefore, according to our 
classification of the event with number (1, 3-6, 9-11, 14, 15) are the crashes that are 
preceded by the bubbles, all the rest – critical events. More detailed information about 
crises, crashes and their classification in accordance with these definitions is given in 
the Table 1. 

Table 1. BTC Historical Corrections. List of Bitcoin major corrections ≥ 20% 

No. Time Days in 
correction 

Bitcoin 
High Price, $ 

Bitcoin 
Low Price, $ Decline, % Decline, $ 

1 07.06.2011-10.06.2011 4 29.60 14.65 50 15.05 
2 15.01.2012-16.02.2012 33 7.00 4.27 39 2.73 
3 15.08.2012-18.08.2012 4 13.50 8.00 40 5.50 
4 08.04.2013-15.04.2013 8 230.00 68.36 70 161.64 
5 04.12.2013-18.12.2013 15 1237.66 540.97 56 696.69 
6 05.02.2014-25.02.2014 21 904.52 135.77 85 768.75 
7 12.11.2014-14.01.2015 64 432.02 164.91 62 267.11 
8 11.07.2015-23.08.2015 44 310.44 211.42 32 99.02 
9 09.11.2015-11.11.2015 3 380.22 304.70 20 75.52 

10 18.06.2016-21.06.2016 4 761.03 590.55 22 170.48 
11 04.01.2017-11.01.2017 8 1135.41 785.42 30 349.99 
12 03.03.2017-24.03.2017 22 1283.30 939.70 27 343.60 
13 10.06.2017-15.07.2017 36 2973.44 1914.08 36 1059.36 
14 16.12.2017-22.12.2017 7 19345.5 13664.96 29 5680.53 
15 13.11.2018-26.11.2018 14 6339.17 3784.59 40 2554.58 

Accordingly, during this period in the Bitcoin market, many crashes and critical events 
shook it. Thus, considering them, we emphasize 15 periods on Bitcoin time series, 
whose falling we predict by our indicators, relying on normalized returns and volatility, 
where normalized returns are calculated as 
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than the ±3σ, where σ is a mean square deviation. 
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Calculations were carried out within the framework of the algorithm of a moving 
window. For this purpose, the part of the time series (window), for which there were 
calculated measures of complexity, was selected, then the window was displaced along 
the time series in a one-day increment and the procedure repeated until all the studied 
series had exhausted. Further, comparing the dynamics of the actual time series and the 
corresponding measures of complexity, we can judge the characteristic changes in the 
dynamics of the behavior of complexity with changes in the cryptocurrency. If this or 
that measure of complexity behaves in a definite way for all periods of crashes, for 
example, decreases or increases during the pre-crashes period, then it can serve as an 
indicator or precursor of such a crashes phenomenon. 

Calculations of measures of complexity were carried out both for the entire time 
series, and for a fragment of the time series localizing the crash. In the latter case, 
fragments of time series of the same length with fixed points of the onset of crashes or 
critical events were selected and the results of calculations of complexity measures 
were compared to verify the universality of the indicators. 

In the Fig. 1 output Bitcoin time series, normalized returns g(t), and volatility VT(t) 
calculated for the window size 100 are presented. 

 
Fig. 1. The standardized dynamics, returns g(t), and volatility VT(t) of BTC/USD daily values. 
Horizontal dotted lines indicate the ±3σ borders. The arrows indicate the beginning of one of 

the crashes or the critical events 

From Fig. 1 we can see that during periods of crashes and critical events normalized 
profitability g increases considerably in some cases beyond the limits ±3σ. This 
indicates about deviation from the normal law of distribution, the presence of the 
“heavy tails” in the distribution g, characteristic of abnormal phenomena in the market. 
At the same time volatility also grows. These characteristics serve as indicators of 
critical and collapse phenomena as they react only at the moment of the above 
mentioned phenomena and don’t give an opportunity to identify the corresponding 
abnormal phenomena in advance. In contrast, the indicators described below respond 
to critical and collapse phenomena in advance. It enables them to be used as indicators-
precursors of such phenomena and in order to prevent them. 
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4 Complex network indicators 

The most commonly used methods for converting time sequences to the corresponding 
networks are recurrent [22], visibility graph [23] and correlation [24]. In the first case, 
the recurrence diagram is transformed into an adjacency matrix, on which the spectral 
and topological characteristics of the graph are calculated. The algorithm of the 
visibility graph is realized as follows. Take a time series Y(t) = [y1, y2, ..., yn] of length 
N. Each point in the time series data can be considered as a vertex in an associated 
network, and the edge connects two vertices if two corresponding data points can “see’ 
each other from the corresponding point in the time series. Formally, two values of the 
series ya (at the time of time ta) and yb (at the time of time tb) are connected, if for any 
other value (yc, tc), which is placed between them (i. e., ta < tc < tb), the condition is 
satisfied: 
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To construct and analyze the properties of a correlation graph, we must form a 
correlation matrix from the set of cryptocurrencies (as is done in Section 7), and from 
it we must pass to the matrix of adjacency. To do this, you must enter a value which, 
for the correlation field, will be the distance between the correlated assets. Such a 
distance may be dependent on the correlation coefficients cij of the value 
x(i, j) = (2(1–cij))1/2. So, if the correlation coefficient between the two assets is 
significant, the distance between them is small, and, starting from some critical value, 
assets can be considered bound on the graph. 

For constructed graph methods described above, one can calculate spectral and 
topological properties. We will show that some of them serve as a measure of the 
complexity of the system, and the dynamics of their changes allows us to build 
predictors of crashes or critical events in the financial markets. 

Spectral theory of graphs is based on algebraic invariants of a graph – its spectra. 
The spectrum of graph G is the set of eigenvalues Sp(G) of a matrix corresponding to a 
given graph. For adjacency matrix A of a graph, there exists an characteristic 
polynomial |λI–A|, which is called the characteristic polynomial of a graph PG(λ). The 
eigenvalues of the matrix A (the zeros of the polynomial |λI–A|) and the spectrum of the 
matrix A (the set of eigenvalues) are called respectively their eigenvalues λ and the 
spectrum Sp(G) of graph G. The eigenvalues of the matrix A satisfy the equality 
퐴푥̅ = 휆푥̅ (푥̅ – non-zero vector). Vectors 푥̅ satisfying this equality are called 
eigenvectors of the matrix A (or the graph G) corresponding to their eigenvalues. 

From a multiplicity of spectral and topological measures we will choose only two – 
the maximum eigenvalue λmax of the adjacency matrix and Average path Length 
(ApLen). For a connected network of N nodes, the ApLen is equal 
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where lij – the length of the shortest path between the nodes i and j. 
Fig. 2 demonstrates the asymmetric response of the spectral and topological 

measures of network complexity. For the complete series, the calculation 
parameters are as follows: window width 100, step is 1 day. For local measures, 
the length of the fragment is 150, the width of the window is 50 and the step is 1 
day. 

 
 а) b) 

 
 c) d) 

 
 e) f) 

Fig. 2. Visibility graph dynamics of network measures λmax (a), ApLen (b) for all Bitcoin time 
series. Dynamics of network measures for local crashes (c, e) and crisis events (d, f) 

The maximum actual value of the adjacency matrix of the visibility graph both for 
Bitcoin as a whole and for isolated segments of time series containing a crash and 
critical phenomenon, takes maximum value. It corresponds to the maximum complexity 
of the system. An especial state of the system leads to a decrease in complexity, and, 
accordingly, to a decrease in value λmax. Average length of the path on the graph 
(ApLen) is, on the contrary, minimal for complex systems and increases with the 
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randomization of the system. Such increase during pre-crash and pre-critical states as 
well as reduce λmax are indicators-precursors of the above mentioned states. You can 
choose other spectral and topological measures from the calculated ones, e.g. the 
maximum degree of the vertex and the diameter of the graph, algebraic connectivity 
and centrality, etc. Network measures of complexity, thus, are the most universal and 
informative and have obvious advantages in the selection of indicators of special states. 

5 Conclusions 

Consequently, in this paper, we have shown that monitoring and prediction of possible 
critical changes on cryptocurrency is of paramount importance. As it has been shown 
by us, the theory of complex networks has a powerful toolkit of methods and models 
for creating effective indicators-precursors of crashes and critical phenomena. In this 
paper, we have explored the possibility of using the network measures of complexity 
to detect dynamical changes in a complex time series. We have shown that the measures 
that have been used can indeed be effectively used to detect abnormal phenomena for 
the time series of Bitcoin. 
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