
Chapter 18
Electromagnetic Modes Inside the Island Kind
2D Photonic Crystal Resonator

E. Ya. Glushko and A. N. Stepanyuk

18.1 Introduction

The existing terminology distinguishes several kinds of photonic structures:
photonic crystals, photonic membranes and photonic crystal resonators. An infinite
2D structure periodically ordered in ZY plane and having also infinite size in
Z direction is called a photonic crystal whereas the photonic crystal resonator has
finite sizes in ZY plane and perfectly smooth boundaries with external medium. This
circumstance generates a clear expressed angular area of total internal reflection
of field inside the resonator for in-plane geometry. In general case, a resonator
has infinite size in X direction. The only way to excite a standing wave inside
exists through the input prisms due to that the external beam may hit into the total
internal reflection area of the resonator. The photonic membrane may be treated as
a thin photonic crystal dividing the external medium into two parts and transmitting
radiation from one medium to another [1]. At the present time the photonic crystals
(PhC) have been widely investigated as perspective objects of optical technologies
in computing, signal processing, telecommunication, sensoring, etc. [2, 3] though in
the main, the 2D PhC is considering only as a perfect reflecting medium surrounding
an optical waveguide. Therefore the conditions of omnidirectional gaps in photonic
spectrum are of interest for the determination of the optimal wavelength range of
optical devices [4–7]. Meanwhile optical properties of photonic crystals may be
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Fig. 18.1 Sketch of the island type binary 13 � 6 period 2D photonic crystal resonator (ICPR).
1 substrate, 2 covering layer, 3 matrix material, 4 accompanying material (shown air wells), 5
input-output waveguides, � l, angle of incidence, p-polarized plane wave

important for a wide area of applications in optoelectronic and all-optical devices.
Further development of this area may be related to more detailed consideration
of the influence of a resonator’s finite sizes on the modal structure and features
of field modal distribution inside a finite photonic crystal. A number of FDTD
investigations exist devoted to wave transmission through the infinite 2D PhCr of
various symmetries (see review [8]) whereas resonators of finite sizes need a more
adequate mathematical model. The proposed island 2D resonator is a generalized
kind of the 2D photonic crystal, (Nz, NY ➔ 1) which, the resonator, has finite sizes
in two directions and perfect external faces (Fig. 18.1). In [8, 9] the properties of
finite resonators were estimated in the framework of perturbation theory. It was
found there that small parameter exists for the problem of captured within the
total internal reflection (TIR) domain electromagnetic field in a finite dielectric
structure with spatially piecewise alternating index of refraction. The condition of
small parameter existence is based on demand electromagnetic energy inside the
resonator which is much more than energy of the mode tails outside the resonator.
Therefore, the number of periods in both directions should be more than 10–12. The
small parameter existence and an appropriate realization of the perturbation theory
were demonstrated in [9, 10] for the case of weak intrinsic optical contrast of the
dielectric photonic structure (see [11]).

In Fig. 18.1, a binary island kind Nz � Ny period photonic crystal resonator
(IPCR) grown on a substrate 1 and consisting of matrix material 3 with refractive
indices n1 pierced with a regular system of wells/bars 4 having refractive indices
n2. If the external covering layer 2 consists of the optically nonlinear material,
an opportunity arises to control the beam entrance angle into the resonator. It is
worth noting that matrix material is topologically connected whereas the embedded
into the matrix ordered bars or wells of a concomitant material are disconnected.
This circumstance is important for the method to calculate field in a finite resonator
developed below.

The resonator in-plane standing modes can be excited by an external source
through the special inputs 5 and may be controlled due to their nonlinear properties.
The photonic modes differ in terms of field density distribution inside the resonator,
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their dependence on frequency and geometry of incidence that may be used in
optical devices to control light energy flows and perform logic operations.

In this work, a binary island kind photonic crystal resonator is investigated
analytically and numerically in the framework of standing wave expansion (SWE)
method. We have calculated parametric dependencies of modes energy for silicon
glass resonator and considered a way to classify the resonator’s eigenstates. The
field distribution inside the resonator is calculated at different parameters, and ways
of use the switching states in optical devices are discussed.

18.2 SWE Theory for Electromagnetic Field in a Finite 2D
Photonic Crystal

The standing wave expansion (SWE) approach is based on the representation of
a 2D eigenstate of a resonator as the expansion in eigenstates produced by two
crossed in Z and Y directions and superposed finite binary 1D photonic crystals.
The eigenvalue problem is analytically solved separately for two probe 1D PhCrs
and resulting 2D basis is generated as a direct production of separated 1D bases
fjs > zg and fjg > yg [6], where s, g D 1, 2, : : :m, correspondingly the 2D basis size is
m2. Due to the rectangular form of the resonator, the incident angles of waves united
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subscript (‘) refers to the optically more dense matrix medium, �1 is the wave angle
of incidence relatively Z-axis in matrix material. Suppose the materials constituting
the photonic crystal are optically linear, isotropic and nonmagnetic and free charges
are absent, the following equation for electromagnetic field in a continuous medium
with piecewise constant refractive index
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can be expanded into the 2D basis j s .�1/ g
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dielectric function "(z, y) is factored out through the Laplace operator, therefore
solutions of both probe 1D problems are the plane wave based standing modes.
In the considered case of p-polarization, a convenient basis of functions Msg(z,
y) may be built in several ways: on the magnetic field components, on tangential
components of electric field and on normal components of the electrical induction.
A set of eigenfunctions based on magnetic field was investigated in [8, 9]. Here
we consider the normal components of electrical induction as the modes Msg(z, y)
of initial basis, where s D 1.smax, g D 1.gmax. The physical restrictions demand
the mode to be a continuous function of variables z and y but the derivatives
may have a jump because the standing waves do not convey energy. Below, we
study the rectangular photonic crystal resonator based on a 2D terminated binary
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structure consisting of the topologically connected matrix material and another
one – disconnected material 4 (Fig. 18.1), which looks like a system of rectangular
bars. Therefore the resonator may be divided into ij areas by the number of periods
Nz, Ny in Z and Y directions, where i D 0,1... 2Nz C 2, j D 0,1... 2Ny C 2. The
outside areas are described by indices i D 0, 2Nz C 2, j D 0, 2Ny C 2 and the
solution of (18.1) contains here at least one exponentially decreasing with distance
factor. Inside the IPCR body, the indices i, j run from 1 to Nz C 1 or Ny C 1. Then
a mode in an intrinsic area ij may be presented in a view:

Msg
ij .z; y/ D Azi � sin �i � "i � cos .kisz C  is/ �

Ayj sin �j � "j � cos
�
kjgy C  jg

�
;

(18.2)

where "i,j denotes dielectric function in matter of the resonator area i or j. The
amplitudes Azi, Ayj and phases  is,  jg are analytically obtained in the framework
of the 1D problem for two probe crossed photonic crystals inside intrinsic areas
j,i D 1,2... 2N C 1, whereas for outside areas where i D 0 or j D 0 the cosines
should be replaced by exp(�kisz) or exp(�kjgy), correspondingly. The wave front
orientation with respect to OX axes is given by angle � i D �1 or �2 for odd or even
layers of a probe 1D PhCr with the same materials and appropriate geometry [8].
The angles � j presented in Y-part of the basis function are � /2��1 and � /2��2 for
odd or even layers, respectively. Here, the index 1 corresponds to matrix material
and index 2 denotes the embedded into the matrix ordered bars of another material.
The indices s, g enumerate eigenstates of two probe 1D problems solved for Z
degrees of freedom at the incident angle �1 and for Y direction at the incident
angle �’
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The amplitudes A, B (A* D B in the considered case) are found in the framework
of both probe problems from the system of boundary conditions taken at 2Nz(y) C 1
alternating boundaries [8–10]. Further, the boundary conditions of continuity for
the normal component of electrical induction (mode) at both surfaces of each layer
of the probe 1D PhCr lead to the system of equations for unknown amplitudes. In
matrix view we have the system of equations
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where
_

L;
_

R are binary matrices of boundary conditions of probe problem for a
layered photonic crystal, indices l (i,j D 0) and r (i,j D 2Nz(y) C 2) describe the
external medium and topology demands "l D "r. The set of 1D functions fjs > zg
and fjg > yg should possess the properties of a basis: completeness, orthogonality,
right position and number of nodal points. Nevertheless, we observed the affinity
of the calculated basis expressed in a weak (5%) non-orthogonality between states
of the same parity. We suppose that the 1D basis affinity is caused by dielectric
function jumps at the layer boundaries. Further, using the Gram-Schmidt procedure
of orthogonalization separately for odd and even subgroups of states, the basis is
transformed to the needed orthogonal form.

The expansion of a mode ¢ into the series gives
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Then, Eq. (18.1) generates the system of equations for expansion amplitudes hsg:
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where q numbers state the 2D basis, Nm D smax�gmax; matrix element <qjk2
sg/"(x,

y)js, g > means the integral is over the resonator and surrounding medium; wave
vector ksg is also a piecewise continuous constant. It should be noted that matrix
elements have the analytical form in our approach because the modes M presented in
formula (18.2) are described by amplitudes Azi(s), Ayj(g) and phases  is,  is found
in two 1D problems for crossed layered structures [8]. These two problems play the
part of a 2D basis generator. The full solution of the IPCR system is given by a
multitude of eigenvalues �q

2 and corresponding standing waves, resonator modes.
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where � enumerates standing waves inside the total internal reflection area of the
resonator and h�m are coefficients of the 2D state � expansion into initial basis js,
g > series.

The developed approach differs from the calculation methods for infinite struc-
tures like the plane wave expansion method (PWEM) due to the essential non-
periodicity of integrals <qjk2

sg/"(x, y)js, g > in (18.6) that leads to additional
4(Nz C 1) (Ny C 1) separate integrals for the total number of ij areas. As a result,
the modes q described by expansion coefficients hq

sg are far from periodicity along
the IPCR body. As an advantage of this method, one can note that the number of
states js, g > taken to form the 2D basis may be essentially less than in the case of
PWEM due to their initial nearness to needed solutions. Especially when it concerns
the local states and low-energetic modes with small number of knot lines. Besides,
the multitude of states js, g > can be formed in accordance with the energy interval
under consideration.

To analyse eigenstates inside the IPCR, we have calculated the 19 � 19-period
(SiO2/SiO2) 2D IPCR consisting of rectangular glass wells with sides bz D 1.0 �m,
by D 1.1 �m and "2 D 2.25 periodically distributed in the optically more dense
glass matrix with dielectric function "1 D 3.61. The optically lesser contrast IPCR
(Fig. 18.2a–c) has the period along Z axis dz. D az C bz D 3.0 �m as well as along
Y axis dy D ay C by D 3.0 �m. The total sizes of the IPCR in this case are 59 � 58.9
� including the covering layer. The optically bigger contrast IPCR (Fig. 18.2d)

Fig. 18.2 Photonic mode distribution patterns for the 19 � 19 period 2D IPCR (left and upper
external parts are cut). SiO2/SiO2 structure bz D 0.5�m, by D 0.6�m, dz. D 2.0�m, dy D 1.8�m.
Modal Msg distribution (a) band mode s D 12, g D 20, � l D � /4; (b) local surface mode s D 12,
g D 19, � l D � /4; (c) local edge mode, s D 19, g D 19, � l D � /4 (lower contrast); (d) local edge
mode, s D 19, g D 19, � l D � /4 (higher contrast, bz D 1.0 �m, by D 1.1 �m, dz. D 3.0 �m,
dy D 3.0 �m)
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has the period along Z axis dz. D az C bz D 2.0 �m as well as along Y axis
dy D ay C by D 1.8�m, then we have total sizes of the IPCR 39.5 � 35.4� including
the covering layer. The difference in optical contrasts for structures based on the
same materials is explained by wider gaps for this geometry [10]. In Fig. 18.2a,
shown is a typical band mode, energy �sg D 0.333 eV, s D 12, g D 20, uniformly
distributed inside the resonator’s body. The part of field energy outside the IPCR
in mode Msg tails is small in comparison with the bulk part. This circumstance is
the reason of small parameter existence and serves as a base of perturbation theory
for field in a resonator of finite sizes [11]. In Fig. 18.2b, field amplitude distribution
is shown for the local surface mode s D 12, g D 19 with energy �sg D 0.327 eV
which is characterized by dominating density of electromagnetic energy near both
resonator surfaces parallel to OZ axis (Fig. 18.1). The case of edge local modes
is presented in Fig. 18.2c (lower contrast, s D 19, g D 19, �sg D 0.378 eV) and
Fig. 18.2d (higher contrast, s D 19, g D 19, �sg D 0.306 eV). Depending on the
intrinsic optical contrast, the edge-kind local mode concentrates its density mainly
near the edges inside the IPCR.

18.3 Mode Energy Angular Diagram for an Island Resonator

The island kind photonic resonator being principally a finite size object serving
to concentrate the electromagnetic energy inside should be described by a basis
set of 2D eigenfunctions which have finite amplitudes in the resonator’s volume
with decreasing to zero outside the IPCR. The electromagnetic flow of resonance
frequency passes into the IPCR through the input and go out through the output
prism (Fig. 18.1). The gain may be reached due to an appropriate ratio of input-
output sections. One more circumstance is that the IPCR is a convenient system to
operate the separate modes due to distinctive difference in their energies and wave
vectors.

We have calculated the 6 � 7-period (SiO2/SiO2) 2D IPCR consisting of
rectangular glass wells with sides bz D 1.0 �m, by D 2.0 �m and "2 D 2.25
periodically distributed in the optically more dense glass matrix with dielectric
function "1 D 3.24 so that the period along Z axis is dz. D az C bz D 2.5 �m
and along Y axis is dy D ay C by D 3.0 �m. The total sizes of the IPCR are 16 � 22
microns including the covering layer.

The multitude of modes having the given number of nodal lines forms a branch
in the TIR domain (‚TIR, � /2-‚TIR). In Fig. 18.3, 10 lowest mode branches were
calculated for 30 angles �1 in interval 0.589 < �1 < 0.982 (14 mode points at
�1 D � /4). The basis contained 100 eigenfunctions, smax D gmax D 10. The
branches 1, 2 : : : 10 are highlighted by colour. The inclined arrows show angles of
strengthened Bragg diffraction along the symmetry directions: 0.629, 0.657, 0.695
radians and three symmetrically reflected points with respect to the ¦¯’ direction
(�1 D 0.785). The calculated lowest energy is �min � 0.006 eV (branch 1) and the
maximal energy 0.372 eV is reached by mode of branch 9 at �1 � 0.973, whereas
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Fig. 18.3 Mode energy angular diagram of the 6 � 7-period (SiO2/SiO2) 2D IPCR. Inset:
rectangular reciprocal lattice cell, symmetry directions: M’, corresponds to �1 D � /4; M, the
resonator diagonal; M”, elementary cell symmetry direction. Mode energy diagram. �1, plane wave
incidence angle in the silicon glass matrix material within the TIR domain 0.589 < �1 < 0.982;
1,2...10, conventional lines (branches) uniting modal points at different �1 by increased number of
nodal lines; ay D 1.5 �m, az D 1.0 �m, well sizes bz D 1.0 �m, by D 2.0 �m (bar material 4,
Fig. 18.1); dielectric functions "1 D 3.24 (matrix); "2 D 2.25 (bar material 4); inclined arrows show
angles of strengthened Bragg diffraction, vertical arrow, direction ¦¯’. Right panel: generalized
bandgap diagram for ¦¯’ direction (N D 7), first band, seven points, second band, seven points;
gap is between 0.116 and 0.132 eV

in interval (0.922, 0.966) both branches 9 and 10 exceed the interval of calculation
0.4 eV. The calculations show that if Nz and Ny increase then all branches shift down
and density of branches becomes larger. Therefore, the states existing in an infinite
PhCr may be forbidden in a finite resonator.

In some sense the considered IPCR represents a generalization of a partial case of
infinite PhCr when Nz, Ny should tend to infinity. The local density of modal points
along energy axis increases with increasing Nz and Ny and simultaneously the all
modal branches go down. Let us take into account that the number of eigenstates
forming the band varies from 0 to N (number of periods in this direction) for the first
band, from N to 2N for the second and so on. Therefore, to transfer from the modal
branches representation to the conventional description of the bandgap structure we
should step by step select N points

N D Int

�q
N2

z cos2 �1 C N2
y sin2 �1

�
(18.8)

corresponding to the chosen angle �1. For the ¦¯’ direction (�1 D � /4) the lowest
p-polarized band of the generalized bandgap diagram is shown at the right side
of Fig. 18.2. As far as the number of states in this direction N D 7, the first
band consists of seven points projected from the ¦¯’ column of mode points
(vertical arrow) to right in order of the mode energy and wave vector growth.
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In a conventional case of an infinite photonic crystal, when the number of periods
along the chosen direction ¦¯’ goes to infinity the number of points forming the
curve also goes to infinity. The second band contains the next 7 modes numbered
from 8 to 14 with energy growth. A partial gap arises between 0.116 and 0.132 eV.
In the case of an infinite resonator, the modes became allocated along the band line
everywhere densely though the point’s density is expressed by the same formula
“crystal size/2�”. Here, we are considering p-polarized modes of the resonator. The
linearly independent set of s-polarized modes form their own structure of branches
and an additional band line arises in the ¦¯’ direction for each band.

If the resonator has the shape of a square and elementary cells are also
squares, the calculated branches became allocated symmetrically as to the bisector
�1 D � /4. Besides, due to symmetry the modal branches are doubly degenerated.
The decrease of symmetry leads to splitting of branches like what we can see
for the considered IPCR. The SWE approach gives a smooth transformation of
the considered IPCR (Fig. 18.1) to a structure with extremely increased dÖ when
the system becomes indistinguishable from a layered structure. Since the angular
discreetness of spectrum arises due to the finite size of the resonator, we have got N
angular-dependent mode branches inside every band of states [1, 9, 10].

18.4 Mode Energy Distribution Throughout the Island
Resonator

The classification of the trapped inside the resonator modes is ruled by the Courant
nodal line theorem [12, 13] claiming that for the system defined in the space Rm,
the nodal set of eigenfunctions (modes) of Eq. (18.1) are locally composed of
hypersurfaces of dimensions m�1. In particular, we have for m D 2 a set of nodal
lines which are either closed or having their ends at the definitional domain. Due
to the principally unlimited definitional domain of the problem under consideration,
the nodal lines must be also nonrestricted. Several topology features should be noted
for the modes of a 2D island kind resonator.

• The node lines of a mode reflects symmetry of the system and are divided into
two types: longitudinally (along Z axis) and transversely oriented.

• The node lines of both types are infinite.
• The energy hierarchy of modes correlates with number of node lines within a

given type.
• If one of two modes has one node line more, it has higher energy, ceteris paribus.

The latter statement is the consequence of the easy proven theorem: between
the two nodal lines of a mode one can find a node line of the older mode with
higher energy. The Courant nodal line theorem gives a base to test the results
of calculation both the set of mode branches (eigenvalues) and mode coordinate
dependencies (eigenfunctions). In general, the structure of island resonator modes
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shows the expected similarity to that existing for transverse electromagnetic waves
in rectangular and cylindrical waveguides [14, 15]. In Fig. 18.4a, the classification of
lowest eigenstates in the IPCR is presented. Two factors influence the classification:
number of node lines and correlation between them. The first circumstance leads
to the shell structure of states when a shell unites modes with the same number
of node lines. It is obvious that two types of node lines produce three kinds of
modes: with node lines along Z axis, along Y axis and containing both transverse
and longitudinal node lines. In Fig. 18.4a, the ground state is represented by a mode
without nodal lines, first shell consists of two modes with one node line, second
shell contains three two-node line states and so on. In accordance with the Courant
theorem, every added node line, even of another type, increases energy of state.
Nevertheless in a binary structure with rectangular (non-square) lattice, the modes
containing node lines of one kind may form more or less densely the ladder of
energy levels. In particular, if period dy > dz. then modes with transverse node lines
have softer spectrum. Mixed modes occupy intermediate position. Therefore the
shells have a tilt that makes energy hierarchy of states more complicate like it is
shown in Fig. 18.3a. The discussed above smooth transformation of the IPCR to
a structure with extremely large magnitudes dÖ will express here in an essential
reconstruction of modal structure: the left column remains the same, soft modes
containing transverse node lines become practically indistinguishable from the left
column modes with the same number of longitudinal nodal lines and vanish. As the
result, the 2D energy angular diagram coincides with the spectrum angular diagram
of a layered photonic crystal. The mode amplitudes h�m have a sense of a mode
expansion coefficients in the js, g > basis. Following (18.5) and (18.6), we calculated
the complete eigenvalue problem including both energies and eigenfunctions in
basis smax D gmax D 10. In Fig. 18.4b, spatial distribution for the lowest 6 modes
� D 1,2...6 at �1 D 0.785 is shown. The calculated energies of states �� are
0.0116 eV, 0.031 eV, 0.040 eV, 0.052 eV, 0.096 eV and 0.112 eV. Though the nodal
lines allocate in accordance with the Courant theorem (arrows), small deviations of
symmetry in the distribution of modal amplitudes arise due to not too high accuracy
of calculations ( 0.01).

To know the distribution of field density in the IPCR may be of importance
in two aspects. First, pumping of a separate mode inside the resonator’s TIR
domain leads to accumulation of energy distributed throughout the IPCR. Therefore
the output beam may be made of much more intensity than the input one. One
more circumstance concerns an opportunity to use the distributed active impurities
matching to a chosen mode.

18.5 Summary

Here the theory of a binary island kind photonic crystal resonator has been
developed in the framework of standing wave expansion method. The 2D basis
formation procedure was implemented with the use of analytically obtained two
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Fig. 18.4 (a) The eigenstates classification in an island kind 2D photonic crystal resonator, lowest
20 modes. Two systems of nodal lines, oriented along Z and Y axis; it is taken that Y direction has
softer spectrum, 1, 2 : : : 5 shells of states; (b) Calculated field amplitude distribution for 6 lowest
p-polarized modes � D 1..6, of the 6 � 7-period (SiO2/SiO2) 2D IPCR (parameters are described
in Fig. 18.3), ICPR mask, white lines, �1 D � /4

1D basis sets for the two probe 1D structures and Courant’s nodal line theorem
in the process of basis generation. Electromagnetic energy distribution for some
typical band, surface and edge modes of a 19 � 19 period photonic resonator were
calculated. The procedure of the transfer to conventional band structure description
was considered for a 6 � 7 period finite structure was investigated analytically
and numerically. The classification concept of island kind resonator’s modes is
proposed. It worth noting that though the rectangular lattice was considered, the
proposed SWE method for finite resonators may be adapted for any symmetry of
the lattice as well as for any shape of bars in matrix.

References

1. Glushko EY, Glushko OE, Karachevtseva LA (2012) Photonic Eigenmodes in a photonic
crystal membrane. ISRN Optics 2012:Article ID 373968:6p. doi:10.5402/2012/373968

2. Yablonovich E (1987) Inhibited spontaneous emission in solid state physics and electronics.
Phys Rev Let 58:2059

3. John S, Joannopoulos D, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding
the flow of light, 2nd edn. Princeton University Press, Princeton

4. Sakoda K (2001) Optical properties of photonic crystals. Springer, Berlin
5. Winn NY, Fink S, Fan Y, Joannopoulos JD (1998) Omnidirectional reflection from a one-

dimensional photonic crystal. Opt Lett 23:1573–1575

http://dx.doi.org/10.5402/2012/373968


274 E.Y. Glushko and A.N. Stepanyuk

6. Deopura M, Ullal CK, Temelkuran B, Fink Y (2001) Dielectric omnidirectional visible
reflector. Opt Lett 26:1197–1199

7. Loncar M, Doll T, Vuchkovich J, Scherer A (2000) Design and fabrication of silicon photonic
crystal optical waveguides. J Lightwave Technol 18:1402–1411

8. Jamois C, Wehrspohn RB, Andreani LC, Hermann C, Hess O, Gosele U (2003) Silicon-based
two-dimensional photonic crystal waveguides. Photonics Nanostruct Fundam Appl 1:1–13

9. Glushko EY, Glushko AE, Karachevtseva LA (2010) Photonic membranes and photonic crystal
resonators for all-optical signal processing. Proc SPIE 7713:77131D

10. Glushko EY (2014) Influence of oxidation on the spectrum of a ternary comb-like silicon
photonic crystal: intrinsic modes, reflection windows and intrinsic contrastivity. Eur Phys J
D 68:264

11. Glushko EY, Glushko AE, Evteev VN, Stepanyuk AN (2008) Electromagnetic eigenwaves in
metastructures: perturbation theory method. Proc. SPIE. 6888:69880J–69880J-11

12. Courant R, Hilbert D (1953) Methods of mathematical Physics, vol 1. Interscience, New York
13. Gladwell GML, Zhu H (2002) Courant’s nodal line theorem and its discrete counterparts. Q J

Mech Appl Math 55(1):1–15
14. Orfanidis SJ Electromagnetic waves and antennas, Chapter 9. Online book: http://

eceweb1.rutgers.edu/~orfanidi/ewa/ch09.pdf
15. Oron R, Davidson N, Friesem AA (2001) Transverse mode shaping and selection in laser

resonators. In: Wolf E (ed) Progress in optics 42. Elsevier Science, Burlington

http://eceweb1.rutgers.edu/~orfanidi/ewa/ch09.pdf

	18 Electromagnetic Modes Inside the Island Kind 2D Photonic Crystal Resonator
	18.1 Introduction
	18.2 SWE Theory for Electromagnetic Field in a Finite 2D Photonic Crystal
	18.3 Mode Energy Angular Diagram for an Island Resonator
	18.4 Mode Energy Distribution Throughout the Island Resonator
	18.5 Summary
	References


