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In this research the technology of complex Markov chains is applied to predict

financial time series. The main distinction of complex or high-order Markov Chains

and simple first-order ones is the existing of aftereffect or memory. The technology

proposes prediction with the hierarchy of time discretization intervals and splicing

procedure for the prediction results at the different frequency levels to the single

prediction output time series. The hierarchy of time discretizations gives a possibility

to use fractal properties of the given time series to make prediction on the different

frequencies of the series. The prediction results for world’s stock market indices is

presented.

Contents

1. Introduction 2

2. Analysis of prominent publications relevant to the subject 3

3. Aims of the paper, problem statement 3

∗Electronic address: vnsoloviev@rambler.ru
†Electronic address: saptsin@sat.poltava.ua
‡Electronic address: chdn6026@mail.ru

ar
X

iv
:1

11
1.

52
54

v1
  [

q-
fi

n.
ST

] 
 2

2 
N

ov
 2

01
1

mailto:vnsoloviev@rambler.ru
mailto:saptsin@sat.poltava.ua
mailto:chdn6026@mail.ru


2

4. Classical modeling problems of ESE systems dynamics 4

5. Modern concepts in ESE systems modeling 7

6. Markov chains prediction technology 8

7. Prediction construction algorithm 10

8. States in complex Markov chains and approaches for defining them 11

9. Step-by-step prediction procedure. Defining the most probable state on

the next step, prediction scenarios 13

10. Time increments hierarchy and splicing procedure 15

11. Results of stock indices prediction 17

12. Conclusions and further work 22

References 22

1. INTRODUCTION

Successful modeling and prediction of processes peculiar to complex systems, such as

ecological, social, and economical (ESE) ones, remain one of the most relevant problems as

applied to the whole complex of natural, human and social sciences ([1–6]).

The diversity of possible approaches to modeling such systems and, usually, more than

modest success in the dynamics prediction, compel us to look for the reasons of failure, find-

ing them not only in details, but also in the axiomatics, which relates to problem statement,

chosen modeling methods, results interpretation, connections with other scientific directions.

With the appearance of quantum mechanics and relativity theory in early twentieth

century new philosophical ideas on physical values, measuring procedures and system state

have been established, the ones that are completely different from Newtonian notions [7, 8].

For more than 70 years basic concepts of classical and neoclassical economic theories have

been discussed by leading scientists, generating new approaches [9]. The general systems

theory has acquired recognition in the middle of the 20th century giving way to development
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of the new, systemic, emergent, and quantum in essence approach to investigation of complex

objects, which postulates the limited nature of any kind of modeling and is based upon fixed

and closed system of axioms [10].

However, the development of this new philosophical basis of ESE systems modeling is

still accompanied with numerous difficulties, and new principles are often merely declared.

Current research is devoted to investigation and application of the new modeling and

prediction technology, suggested in [11, 12], based on concepts of determined chaos, complex

Markov chains and hierarchic (in terms of time scale) organization of calculating procedures.

2. ANALYSIS OF PROMINENT PUBLICATIONS RELEVANT TO THE

SUBJECT

Prediction of financial-economic time series is an extremely urgent task. Modern ap-

proaches to the problem can be characterized by the following directions: 1) approximation

of a time series using an analytical function and extrapolation of the derived function to-

wards future – so-called trend models [13]; 2) investigation of the possible influence various

factors might have on the index, which is being predicted, as well as development of econo-

metric or more complicated models using the Group Method of Data Handling (GMDH)

[3, 14]; 3) modeling future prices as the decisions-making results using neuronal networks,

genetic algorithms, fuzzy sets [14–16].

Unfortunately, these techniques don’t produce stable forecasts, what can be explained by

complexity of the investigated systems, constant changes in their structure. Although we

are trying to join these directions in one algorithm, it is the latter option that we prefer,

with it consisting in creating a model adequate to the process generating a price time series

[17]. This very approach gives a chance to approach the complexity of the system, which

generates the observed series, develop the model and use its properties as the prognosis.

3. AIMS OF THE PAPER, PROBLEM STATEMENT

Assume the time series is set by a sequence of discrete levels with constant step of time

sampling ∆t. We need to generate variants of the time series continuation (prognosis sce-

narios) according to the relations between the sequences of absolute and relative changes
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discovered with the help of complex Markov chains.

4. CLASSICAL MODELING PROBLEMS OF ESE SYSTEMS DYNAMICS

Another peculiar feature of ESE systems, apart from complexity, is a memory, including

the long-term one, as well as nonlinear and unstable nature of interactions and components,

which makes it harder to predict their future behavior.

Unfortunately, mathematical models based on differential equations have no memory

(there is no aftereffect), while for models with memory, where integral interrelations are

used, it is not always possible to take into account nonlinearity (the integration procedure

is linear by definition).

In reality, in the Cauchy problem future systems behavior is defined by its initial state

and doesn’t depend on the way the system reached its current state. However, it is hardly

true that future behavior of a real socio-economic or socio-ecological system can be predicted

by giving an immediate time “slice” of a variables set that describe its state.

Let us consider possible ways to take into account past events while modeling ESE sys-

tems’ dynamics, which goes beyond the boundaries of classical differential and integral equa-

tions.

Functional differential lagging equation can serve as a simple example of the dynamic

model with memory, where present time is defined by the state variable x(t) and depends

on the past state x(t− τ) with constant time lag τ = const:

x(t) = f (x(t− τ)) ; t ≥ t0, (1)

where f(x) is the known function, with initial conditions being set for the half-interval

t0 − τ ≤ t < t0 by the function φ(t):

x(t) = φ(t); t0 − τ ≤ t < t0. (2)

Given the 2 equation 1 has the only solution, defined by recurrent ratios :

x(t) =



f (φ(t− τ)) ; if t0 ≤ t < t+ τ ;

f (f (φ(t− τ))) ; if t0 + τ ≤ t < t+ 2τ ;

f ((f (φ(t− τ)))) ; if t0 + 2τ ≤ t < t+ 3τ ;

· · ·

(3)
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Using Dirac delta function, as defined by ratios:

δ(t) = 0, if x 6= 0;

+∞∫
−∞

δ(t)dt = 1, (4)

we can formally rewrite equation 1 in the integral form:

x(t) =

t∫
−∞

dt1f (x(t1))H(t1, t);H(t1, t) ≡ δ (t1 − (t− τ)) ; t ≥ t0. (5)

Delta function is not a function in the conventional interpretation and is related to the

class of generalized functions that were mathematically described only in the middle of

the last century [18] (physics started using this function much earlier). Its classical form is

considered to be a limit of the “peak” sequence, with its centre set in the point of origin. The

afore-mentioned “peaks” indefinitely converge widthway, indefinitely increase throughout the

height and have a unit area.

An approximate classic integral analogue of the equation 5 can be derived by substituting

δ(t) with an ordinary function - some specific narrow enough “peak” of a unit area, a certain

finite width v ∆t as well as a finite height . The derivative of the Fermi function is one of

the possible examples:

Φ(t) =
1

1 + exp
(−t
θ

) ; δ(t) ≈ 1

θ
(
2 + exp

(−t
θ

)
+ exp

(
t
θ

)) . (6)

If the system’s state in the moment t, x(t), is defined not by one, as in 1, but k (k =

2, 3, 4, · · · ) of her past states x(t − τ1), x(t − τ2), · · · x(t − τk) in the following moments of

time (t− τ1), (t− τ2), · · · , (t− τk) respectively (τ1 = const, τ2 = const, · · · , τk = const, τ1 >

τ2 > · · · > τk > 0), then instead of (1), (2), (5) we get:

x(t) = f (x(t− τ1);x(t− τ2); · · · ;x(t− τk)) ; t ≥ t0; (7)

x(t) = φ(t); t0 − τ1 ≤ t < t0; (8)

x(t) =
t∫
−∞

dt1
t∫
−∞

dt2 · · ·
t∫
−∞

dtkf (x(t1), x(t2), · · · , x(tk)).

δ ((t1 − (t− τ1)) δ ((t2 − (t− τ2)) · · · δ ((tk − (t− τk)) ; t ≥ t0.

(9)
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Therefore if the system’s state in the time moment t depends on the infinite sequence

of its past states, the integral analogue of the functional differential lagging equation will,

generally speaking, contain an integral of the infinite multiplicity. At the same time the

infinite amount of past states can relate to both finite (t − τ1; t) (short-term memory) and

infinite (−∞; t) (long-term memory) time span.

Pay attention that the classic integral lagging equation is one of the Volterra type [19]:

x(t) =

t∫
−∞

F
(
x(t̃); t; t̃

)
dt̃, (10)

where F
(
x(t̃); t; t̃

)
- is an arbitrary (generally nonlinear) function of variables x(t̃); t; t̃,

which allows to take into account system’s memory of its past states only in the additive

approximation, which becomes evident, if the right section 10 is rewritten in the following

way:

t∫
−∞

F
(
x(t̃); t; t̃

)
dt̃ ≡

t∫
t1

F
(
x(t̃); t; t̃

)
dt̃+

t1∫
t2

F
(
x(t̃); t; t̃

)
dt̃+ · · · =

F
(
x(t̃1); t; t̃1

)
· (t− t1) + F

(
x(t̃2); t; t̃2

)
· (t1 − t2) + · · · ;

t > t1 > t2 > · · · ; t̃1 ∈ [t1, t] ; t̃2 ∈ [t2, t1] ; · · ·

(11)

In connection with it note that the equation 9 in case of an additive dependency of

contemporaneity on the past, i.e. in case:

f (x(t− τ1);x(t− τ2); · · · ) ≡ f1 (x(t− τ1)) ; f2 (x(t− τ2))) ; · · · (12)

becomes a particular case of the equation 10 with the following integrand:

F
(
x(t̃); t; t̃

)
≡ f1

(
x(t̃)

)
δ
(
t̃− (t− τ1)

)
+ f2

(
x(t̃)

)
δ
(
t̃− (t− τ2)

)
+ · · · (13)

Meaningful analysis of nonlinear models dynamics with memory, in which the future is

defined by the infinite amount of states in the past is generally possible only in case of a

discrete representation. The results of such analysis will be approximated, i.e. will contain

uncertainty, which has to be considered endogenous, i.e. internal, and peculiar to this very

system.

With a certain level of time sampling, models with memory both 7 and 10 becomes:

x(n+ 1) = f (x(n);x(n− 1);x(n− 2) · · · ) . (14)
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To take into account and quantify the uncertainties, observed in ESE as well as other

complex systems probability models are normally used. However their application is based

on doubtful hypotheses, while the statistical interpretation of the results is not always infor-

mative enough and results might not correspond with the real process occurring within the

system. In particular, the well-known problem of 1/f–noise (look for example [20]), closely

connected to the presence of long-term memory in complex systems, implies the absence of

the mean temporary value (as a limit of a certain time span converging to infinity, which

serves as the basis for averaging) for any process occurring in such kind of system. Therefore

such processes can’t have a rigorous statistical substantiation.

5. MODERN CONCEPTS IN ESE SYSTEMS MODELING

New approaches to modeling and prediction of complex nonlinear systems dynamics with

memory are based on the use of determined chaos and neural networks technologies (cf.

e.g. [15, 21, 22]). Both investigation and realization of such techniques has become possible

only with the appearance of quick-operating computers. Use of the recurrent computational

process has become the general feature for all these technologies:

xn+1 = fn (fn−1 (· · · (f1(x1) · · · ))) , n = 1, 2, · · · , (15)

where fi(xi) is a certain nonlinear mapping of a multi-dimensional vector xi, i - discrete,

real or fictitious, time. Identification of the model 15 is reduced to the determination of

functions fi(xi), while the differences between the models of determined chaos and neural

networks are connected with the function type and methods of its definition (neural net-

work models normally use rather narrow class of fi(xi) mappings [16]). Generally speaking,

stability or convergence of the process 15 is not required, whereas a single-step set of vector

xi components as well as their time dynamics can be of great interest.

For the particular case of the model 15, introducing corresponding lagged variables, a

model 14 can be transformed.

Both determined stable processes, described by integro-differential equations, and random

processes, which also include complex Markov chains (CMC), can be formally considered

as separate extreme cases of determined chaos models realization 15. Given the sampling

scale, which tends to zero, if such a tendency makes sense and corresponding limits exist, we
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derive classical differential and integral problem statement. Finite ∆t allows to get models

with discrete time, which in the general case in the corresponding phase space (which also

includes lagged variables) can produce both measurable sets (discrete or continuous) that

allow probabilistic interpretation and those of the special structure – fractals [23], that can’t

be always interpreted in that way.

Various digital generators of so-called random sequences used in imitational modeling

can be an example of determined chaos models that allow probabilistic interpretation.

Let us note that in reality there are no accurate procedures that would give an opportunity

to distinguish a “real” random sequence from the pseudorandom one.

6. MARKOV CHAINS PREDICTION TECHNOLOGY

Suppose there is a sequence of a certain system discrete states. From this sequence we

can determine transitions probabilities between the two states. Simple Markov chain is a

random process, in which the next state probability depends solely on the previous state

and is independent from the rest of them. Complex Markov chain, unlike the simple one,

stands for the random process, in which the next state probability depends not only on the

current, but also on the sequence of several previous states (history). The amount of states

in history is the order of the Markov chain.

Theory of simple Markov chains is widely presented in literature, for example [24]. As

for the high order Markov chains, modern literature [25] can offer us a mere definition.

Developing complex or high order Markov chain’s properties is not widely presented in

modern scientific publications. It’s necessary to mention the papers [26, 27] where properties

of complex Markov Chains are developed, but no prediction algorithm is proposed there.

The development of prediction method, based on complex Markov chains, is proposed in

this paper.

Markov chain of the higher order can be brought to a simple Markov chain by introducing

the notion of a “generalized state” and including a series of consequent system’s states into

it. In this case, tools of simple Markov chains can be applied to the complex ones.

Investigated dynamic series is a result of a certain process. It is assumed that this process

is determined, which implies the existence of a causal dependence of further states on history.

It is impossible to fix and analyze the infinite history, which puts obstacles in the way of an
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accurate detection of this influence and making precise predictions.

The problem consists in the maximal use of information, which is contained in the known

segment of the time series, and subsequent modeling of the most probable future dynamics

scenario.

The observed process is described as a time series of prices pt with the given sampling

time span ∆t

pti = p(t0 + i∆t). (16)

Discrete presentation of the time series is in fact a way of existence of this very system.

New prices are formed on the basis of contracts or deals, made on the market in certain

discrete moments of time, while the price time series is a series of the averaged price levels

during the chosen time intervals. While making a decision each trader, who is an active

part of the pricing system, works solely with discrete series of the chosen time interval (e.g.

minute, 5-minute, hourly, daily etc.). For ∆t→ 0 the accuracy of data presentations reaches

a certain limit, since for relatively small ∆t the price leaps in the moment of deal, while

staying unchanged and equal to the last deal during the time between the two deals. Hence,

the discreteness of time series has to be understood not only as a limited presentation of

activity of the complex financial system, but also as one of the principles of its operation

[11, 12, 28–30].

The time series of initial conditions has to be turned into a sequence of discrete states.

Let us denote the amount of chosen states as s, each of them being connected to the change

in the quantity of the initial signal (returns). For example, consider the classification with

two states, first of which corresponds to positive returns as the price increases, while the

second one – to negative as it descends. Generally all possible increments of the initial time

series are divided into s groups. Ways of division will be discussed further.

Next we develop predictions for the time series of sampled states. For the given order

of the Markov chain and the last generalized state the most probable state is chosen to

be the next one. In case if ambiguity occurs while the state of maximum probability is

being evaluated, an algorithm is used that allows reducing the amount of possible prediction

scenarios. Therefore we get the series of predicted states that can be turned into a sampled

sequence of prognostic values.

Evaluation of increments, prediction, and subsequent restoration are conducted for the

given hierarchy of time increments t. To use the given information as effectively as possible,
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the prediction is conducted for time increments t = 1, 2, 4, 8, ..., or a more complex hierarchy

of increments and subsequent “splicing” of the results derived from different prediction

samplings.

The procedure of prediction and splicing is iterative and conducted starting from smaller

increments, adding a prediction with the bigger time increment on every step.

As the sampling time step t increases, the statistics for the investigation of Markov chains

decreases, whereas the biggest sampling step, which takes part in the prognostication, limits

itself. To supplement the prediction with the low-frequency component the approximation

of zero order is being used in the form of a linear trend or a combination of a linear trend

and harmonic oscillations [31, 32].

7. PREDICTION CONSTRUCTION ALGORITHM

Let us consider the consequence of operations, required for the prognostic time series

construction. To do this we need to set the following parameters:

1) The type of time increments hierarchy (simple – powers of two, complex – product of

powers of the first simple numbers).

2) Values of s – the amount of states and r – the order of the Markov chain. These

parameters can be individual for every sampling level; finding of optimal parameters is done

experimentally.

3) Threshold values δ, and minimal number of transitions Nmin.

Prediction construction algorithm includes the following steps:

1) Generating hierarchy of time increments - t sequence. The maximal of them has to

correspond to the length of a prognostic interval Nmax.

2) For every time increment ∆t, as the increments increase, a prediction of states and

restoration of the time series along the prognostic states is conducted. Current stage includes

following actions:

2.1. Evaluating increments (returns) of the series with ∆t sampling.

2.2. Transforming the time series of increments into the series of state numbers (1..s).

2.3. Calculating transition probabilities for generalized states.

2.4. Constructing the series of prognostic states using the procedure of defining the most

probable next state.
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2.5. Restoring the value series from the state series with ∆t sampling.

2.6. Splicing the prediction of ∆t sampling with the time series derived from splicing of

the previous layers (with the lesser step ∆t). In case if the current time series is the first

one, the unchanged time series will come as a result of splicing.

3) To splice the last spliced time series with the continuation of the linear trend, created

along all previously known points.

The time series, spliced with the linear trend, is the result of prediction. Let us consider

the stages of the given algorithm in detail.

8. STATES IN COMPLEX MARKOV CHAINS AND APPROACHES FOR

DEFINING THEM

In everything that concerns current technology, states are connected to the measuring of

a prognostic value. There is a number of ways to classify returns in states, from which the

following are suggested. One of them is the classification based on the homogeneity principle

as concerning the amount of representatives in classes; based on the homogeneity principle

of deviation, as well their combinations for different deviation modules.

Increment or returns of the time series serves as the basis for states classification [32, 33].

Absolute ra and relative rt increments of the time series are considered:

ra = pt − pt−∆t, (17)

rt =
pt − pt−∆t

pt
, (18)

where pt – is the input time series of price dynamics, ∆t – sampling interval, which is

chosen for subsequent analysis. It is known that mathematical expectation of the returns

time series equals zero, whereas variation comes as the measure of time series volatility.

Based on returns values rt classification and transformation of values to the time series of

discrete states are conducted. One of the classification principles is homogeneity according to

the amount of class representatives. This classification divides the set of all increments into s

groups equal in number. Calculated with the given sampling, time series increments are then

systematized in growth and divided into equal parts. Thus we define limit values {rlim,i},

which are used afterwards during transformation of the returns into class numbers. Large
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number of identical states can cause certain problems, such as identical bounds of several

neighbouring states. It creates a number of states with no representatives, which makes

correction of the division a necessary action. In that way we will reach the largest possible

homogeneity in state division. Classification is conducted along the following algorithm

[34, 35]:

st = (i | rlim,i−1 > rt > rlim,i) (19)

where st is the number of state, which corresponds to the moment of time t, for which the

returns level was computed rt; i is the number of state [1 . . . s], which is characterized by

the interval [rlim,i−1, rlim,i] corresponding to the calculated returns level rt.

Apart from the returns interval, given by the aforementioned values [rlim,i−1, rlim,i], a

mean returns value is chosen for every state ravg,i, which will be used in time series values

transformation according to the prognostic discrete states.

Another way of dividing the time series into states implies dividing the interval of returns

values into equal parts, from minimal to maximal deviation. In this case homogeneity

according to the amount of representatives in states does not occur. In fact this method

differs from the previous one in terms of defining limit values {rlim,i}. Possible combined

ways of division, in case of which the limit value, dependent on standard deviation, is used

instead of maximal and minimal value, and division is conducted homogenously according

to the deviation.

Since the real causal dependence is unknown during the process, to find it adequate

state classification, which would allow to reveal vital dependencies of the time series, is

required. We suggest a couple of ways to divide the time series into states, which in the first

place allow to preserve adequate transition probabilities between states, as well as prevent

averaged deviations inside the states from affecting the accuracy of the derived prediction.

To check the efficiency of division we conduct the sampling procedure and classify the

increments according to each hierarchy. Having completed that, we restore the time series

using known states for each hierarchy and finish the splicing procedure. Since the state series

correspond to the initial time series, we get the curve, with deviation, caused exclusively

by the state averaging mistake (quantum mistake). Thus, having set a certain value of

state numbers s and carried out sampling, restoring, and sampling procedures (excluding

prediction), we get absolute sampling (quantum) mistake.
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Increasing the number of states, we improve the accuracy of restoration, however one

should remember, that the choice of the quantum levels is limited by the fact that the

transition probabilities definition with sufficient accuracy is required, which is confirmed by

artificial test time series prediction experiments.

9. STEP-BY-STEP PREDICTION PROCEDURE. DEFINING THE MOST

PROBABLE STATE ON THE NEXT STEP, PREDICTION SCENARIOS

Predicting procedure uses the most probable state as the next one under current circum-

stances. Probability matrix of state transitions is used for the afore-mentioned purpose.

In this case, you have to take into account that probabilities are calculated with a certain

mistake. We cannot precisely compute the probabilities, since it is impossible to derive an

infinite time series, and only a part of the time series is known – the known part serves as

the basis for probabilities. The second important aspect implies the case of several states

with maximal probability.

To prevent the omission of the states, for which the probabilities are computed with a

mistake, one should add a state with maximal probability to the states, which are located in

the distance of δ from the maximal one. The value of parameter δ depends on the probability

evaluation mistake and requires experimental refinement.

If δ > 0, the number of states with maximal probability increases in comparison to the

value δ = 0. Let us call a couple of neighbouring states with maximal probability a cluster.

Cluster states with average deviation values are supposed to have the largest probability.

To predict the dynamics, let us confine ourselves to one or two most probable states. To

define them a following algorithm is suggested:

1) If levels (discretized increments) create several clusters (cluster is a group of several

neighbouring levels – cluster elements, minimal cluster is a single isolated level) with maximal

probability, we choose the largest cluster.

2) If the number of cluster elements is odd, as kmax we choose a central element.

3) If the number of cluster elements is even, we consider two central cluster elements and

choose as kmax the one, which is closer to the centre of distribution.

4) If two central cluster elements are equidistant to the centre of distribution, we consider

both cases as possible variants of kmax values (bifurcation point).
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5) If there are several clusters of maximal size, we consider them as new elements, which

can also form clusters that will undergo the same steps 1)-4).

This principle is based on the following ideas:

1) If there are two neighbouring states of maximal probability, it is better to take the

one, which is closer to the centre of distribution, in order to minimize the risk of occurrence

of false linear trends in the prediction.

2) If levels of maximal probability are not the neighbouring ones, at least two variants

have to be considered, as it can be connected to the bifurcations that should not be omitted.

3) If the prediction is carried out according to 1) (on all stages of the hierarchy), we

receive a certain approximation of the lower limit of the prediction, whereas in case of 2) –

we get an approximation of the upper limit.

Hence this algorithm can adequately restore the case of possible bimodal probability

distribution, it is proposed to consider 2 prediction scenarios.

In case of the complex Markov chains, probability of the next state depends not only on

the previous state, but also on the sequence of r states, which have occurred before given.

In this case, it is necessary to calculate transition probabilities from the sequence of r states

into the r + 1 state. Formally, these probabilities can be written into the rectangular table

of (rs, s) size.

Having generalized the notion of “present state” and included a sequence of r preceding

states into it, we can reduce Markov chains of r order to the chain of the first order. Thus

transition probabilities can be written into rectangular matrices of (rs, rs), that come as

transition probability matrices for generalized states.

The process of prediction implies the following: the last state is chosen (in case of Markov

chains of an order r > 1 a sequence of r latest states is taken). The probability of transition

from current state to all possible states is defined. From all possible states a state with

maximal probability is chosen. It is possible that several states with maximal probability

occur, which can be explained by the bimodal probability distribution. The process of

decision-making in this case is described later.

The chosen most probable state is taken as the next prognostic state and the procedure

is repeated for the next (last added) state. Thus we receive a time series of prognostic states

for the given sampling time ∆t.

Further according to the received state sequence and known initial value the time series is
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being restored for the given time sampling ∆t. In this case every state implies ∆t points of

the time series. On the stage of state classification every state was connected to the average

increment ravg,i, which is added to the value of the last point in the time series, and the

next discrete point is computed. Intermediate points are filled as linear interpolation of two

known neighbouring points. Algorithm of yt time series values restoration according to the

initial price pt and a series of average increments ravg,ik, corresponding to the prognostic

states sk, can be given by a sequence of calculations:

yt = pt,

yt+1 = yt + ravg,i1/∆t = pt + ravg,i1/∆t,

yt+2 = yt+1 + ravg,i1/∆t = pt + 2ravg,i1/∆t,

. . .

yt+∆t−1 = yt+∆t−2 + ravg,i1/∆t = pt + (∆t− 1)ravg,i/t,

yt+∆t = yt+∆t−1 + ravg,i1/∆t = pt + ∆travg,i/∆t = pt + ravg,i1,

yt+∆t+1 = yt+∆t + ravg,i2/∆t = pt + ravg,i1 + ravg,i2/∆t,

. . .

yt+n∆t−1 = yt+n∆t−2 + ravg,in/∆t = pt +
∑n−1

k=1 ravg,ik + (∆t−1)
∆t

ravg,ik,

yt+n∆t = yt+n∆t−1 + ravg,in/∆t = pt +
∑n

k=1 ravg,ik.

(20)

10. TIME INCREMENTS HIERARCHY AND SPLICING PROCEDURE

Time series increments will be computed with different steps. For example, analogous

to the discrete Fourier transform, time increments are equal the powers of 2 are considered.

First, we calculate increments as a remainder of two nearest neighbouring time series values,

then next nearest values are considered with the step of 2, 4, 8, 16 etc. Let us mark this

difference in time as ∆t.

For every ∆t we conduct an increment time series transformation leading to a time series

of states. Further we predict the future sequence of states and restore the time series with

the given sampling rate according to the prognostic series of states.

Time series, received as a result of restoring for different ∆t, undergo the splicing proce-

dure, which gives out an actual prognostic time series.

Thus an increment hierarchy is chosen, where each one is responsible for its own sampling

rate, which serves as a basis for predicting, restoring and splicing.
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The splicing process implies the following. The procedure is iterative. With every next

(along with the increasing step) sampling time the series corrects itself, driving the predic-

tion, formed under lower ∆t, to its actual point. Transformations that are conducted during

splicing can be written down in the form of the following calculations.

Suppose the splicing procedure has been finished for all time increments ∆t < Deltati,

the prediction has been done under the ∆ti sampling according to formulae 20, and as a

result a time series yi has been derived. Let us consider the iterative splicing procedure of

the received series yi with the series, acquired during all preceding splicing procedures gi.

Since the series yi contains system points only in moments aliquot to ∆ti, and other

points of the series are interpolated, the process of splicing implies the substitution of these

interpolated points with the values of system points from previous ∆t < ∆ti, which are

contained in the series of results of previous splicing procedures gi. Splicing algorithm can

be written in the sequence of computations:

zt = gt = pt,

zt+1 = gt+1 + (yt+∆ti − gt+∆ti) /∆ti,

zt+2 = gt+2 + 2 (yt+∆ti − gt+∆ti) /∆ti,

. . .

zt+∆t−1 = gt+∆t−1 + (∆ti − 1) (yt+∆ti − gt+∆ti) /∆ti,

zt+∆t = gt+∆t + (∆ti) (yt+∆ti − gt+∆ti) /∆ti = yt+∆ti
,

zt+∆t+1 = gt+∆t+1 + ((yt+2∆ti − gt+2∆ti)− (yt+∆ti − gt+∆ti)) /∆ti,

zt+∆t+2 = gt+∆t+2 + 2 ((yt+2∆ti − gt+2∆ti)− (yt+∆ti − gt+∆ti)) /∆ti,

. . .

zt+n∆t−1 = gt+n∆t−1 + (∆t−1)
∆t

(
(yt−n∆t − gt−n∆t)−

(
yt−(n−1)∆t − gt−(n−1)∆t

))
,

zt+n∆t = gt+n∆t +
(
(yt−n∆t − gt+n∆t)−

(
yt+(n−1)∆t − gt+(n−1)∆t

))
=

= gt+(n−1)∆t − yt+(n−1)∆t − yt−n∆t.

(21)
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11. RESULTS OF STOCK INDICES PREDICTION

In this section we offer the results of stock indices prediction. The stock’s indices

databases are available from [36]. Point 2000 indicates the starting moment of the prog-

nosis: March 24, 2011. The green line on the next figures indicates real indice’s or price’s

values. Our software for time series forecasting by the proposed methods is available from

our website: http://kafek.at.ua/MarkovChains1_2_20100505.rar.

Figure 1: Stock indices prediction. a) Dow Jones Industrial Average - DJI (USA). b)

FTSE 100 (Great Britain)

Figure 2: Financial companie’s share prices forecasting. a) Morgan Stanley (USA). b)

BNP Paribas (France)

http://kafek.at.ua/MarkovChains1_2_20100505.rar
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Prediction time series with different input learning set’s length are shown at the fig.3

and 4. Prediction series for DJI at the figure 3 are more correlated, than FTSE index at

the figure 4. At the subplot b) of the above mentioned plots the mean value and standard

deviations of the prediction’s series are presented. The time of prediction series beginning

on the next figures is the point 1000 and correspond to October 14, 2011.

Figure 3: Dow Jones Industrial Average - DJI (USA). a) Prediction series, calculated with

different learning set’s length. b) Mean value and standard deviation for prediction series.

Figure 4: FTSE 100 index prediction. a) Prediction series, calculated with different

learning set’s length. b) Mean value and standard deviation for prediction series.
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The normalization procedure is proposed in order to compare indices and it’s prediction

series with different absolute values. The normalized values calculated with the following

formula:

yn(t) =
y(t)−min (y(t))

max (y(t))−min (y(t))
. (22)

Normalized prediction time series are shown at the fig.5 (America), fig.6 (Europe, devel-

oped countries), fig.7 (Europe, PIIGS), fig.8 (Asian markets). All the figures contain mean

time series, which are weighted average of countrie’s stock indices predictions, weihted with

GDP values [37] for the corresponding countries.

Figure 5: Normalized mean values for the prediction series of America’s stock indices.

Brazil (BVSP), Mexico (MXX), Canada (GSPTSE), Argentina (MERV), USA (S&P 500)
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Figure 6: Normalized mean values for the prediction series of European

stock indices. Developed countries: FTSE (Great Britain), DAX

(Germany) FCHI (France), Netherlands (AEX)

Figure 7: Normalized mean values for the prediction series of European

stock indices. Portugal (PSI20), Italy (FTSEMIB), Ireland (ISEQ),

Greece (GD) and Spain (IBEX).
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Figure 8: Normalized mean values for the prediction series of Asian

stock indices. China (SSEC, HSI), Korea (KS11), Japan (NIKKEI),

India (BSESN), New Zealand (NZ50).

Figure 9: Mean values of normalized World’s powerful economies

indices prediction series.
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12. CONCLUSIONS AND FURTHER WORK

Current paper suggests an algorithm of time series prediction based on complex Markov

chains. Hierarchy of time increments principle allows to use the information, which is con-

tained in the time series during the prognosis construction, to its fullest. Experimental work

on stock market indices time series prediction shows the efficiency of the algorithm and

confirms the relevance of further research of the offered method.
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