1991	ФИЗИК	A T B	ЕРД	ΪΟΓΟ	ТЕЛА	Том 33,	<i>N</i> ⊴ 2
1991	SOLID	STA	ΤE	PHYS	ICS	Vol. 33,	N Z

УДК 537.635. 539.2 © 1991

МОДЕЛИРОВАНИЕ НА ЭВМ ЯВЛЕНИЯ ЭХА В ДИЭЛЕКТРИЧЕСКИХ СТЕКЛАХ

Д. А. Паршин, В. Н. Соловьев

Проведено численное исследование различных разновидностей диэлектрическогоэха в стеклах с учетом спектральной диффузии. Показано, что спектральная диффузия играет важную роль в затухании сигналов ротационного и двухимпульсного эха. В случаях двухимпульсного ротационного и стимулированного эха ее влияние значительнослабее. Затухание сигнала имеет экспоненциальный характер и, скорее всего, связано с тем, что не учтено влияние туннельной прозрачности резонансных двухуровневых систем на величину их взаимодействия с тепловыми двухуровневыми системами.

Известно, что многие низкотемпературные тепловые и акустические свойства стекол проявляют аномалии [¹]. Наблюдаемые аномалии хорошо описываются в рамках туннельной модели Андерсона, Халперина, Вармы [²] и Филлипса [³], расширенной и модифицированной Карповым и др. [⁴]. Туннельная модель предполагает наличие в стеклах атомов или групп атомов, которые могут находиться в двух устойчивых положениях равновесия, разделенных барьером. При низких температурах этот барьер преодолевается путем квантовомеханического туннелирования.

Времена жизни туннельных состояний могут быть достаточно большими. При этом возможно проявление когерентных явлений: акустического и диэлектрического эха [⁵], аналогов спинового и фононного эха: Исследование явлений эха (спонтанного, стимулированного, ротационного) позволяет получить информацию о временах релаксации туннельных состояний, изучить их взаимодействие с фононами [⁵].

Теоретическое описание резонансной динамики отождествляемых с туннельными состояниями двухуровневых систем (ДУС) сильно осложнено явлением спектральной диффузии. Суть последнего сводится к следующему [⁶]. Каждая ДУС создает вокруг себя поле деформаций, величина которых зависит от того, в каком энергетическом состоянии (верхнем или нижнем) находится данная ДУС. Наиболее важны так называемые тепловые ДУС с расстоянием между уровнями $E \simeq T$. Под влиянием тепловых фононов они постоянно совершают переходы из одного состояния в другое. В результате этого поле деформаций, создаваемое ими вокруг, флуктуирует во времени. В свою очередь энергия любой ДУС меняется при деформации. Поэтому переходы в окружающих ее тепловых ДУС приводят к тому, что эта энергия флуктуирует во времени.

В настоящей работе проведено численное исследование различных разновидностей эха в диэлектрических стеклах с учетом спектральной диффузии путем моделирования на ЭВМ. Показано, что в ряде случаев спектральная диффузия является основным механизмом, определяющим спад амплитуды эха.

1. Качественные представления

Опишем коротко концепцию ДУС, в рамках которой будет проводиться дальнейшее рассмотрение [^{2, 3}]. Спектр ДУС состоит из двух близко расположенных уровней, расстояние между которыми (энергия ДУС) $E = \sqrt{\Delta_0^2 + \Delta^2}$, где Δ — асимметрия потенциала; $\Delta_0 = \hbar \omega_0 e^{-\lambda}$ — туннельная прозрачность барьера; λ — безразмерный параметр, характеризующий перекрытие волновых функций левой и правой ям двухъямного потенциала; ω_0 — частота колебаний в одной яме.

В силу имеющегося в стеклах структурного беспорядка параметры ДУС являются случайными и равномерно распределенными [^{2, 3}]

$$N(\Delta, \lambda) = N_0 = \text{const.}$$
(1)

Случайной величиной в силу (1) является и энергия Е. Плотность состояний равна

$$W(E, p) = N_0/2p\sqrt{1-p}, \ p = (\Delta_0/E)^2.$$
 (2)

Гамильтонван ДУС во внешнем электрическом поле можно записать в виде [⁵]

$$H = H_0 + H_s = \frac{1}{2}E\hat{\sigma}_x + (\mu'\hat{\sigma}_x + \frac{1}{2}\mu\sigma_z)\mathbf{F}(t).$$

Здесь первый член представляет собой статический гамильтониан с собственными значениями $\pm E/2$, а второй описывает взаимодействие системы с зависящим от времени электрическим полем F (t); σ_i — матрицы Паули; член $\mu = 2$ (Δ/E) m описывает изменение расстояния между уровнями ДУС в электрическом поле F; m = 1/2 ($\partial \Delta/\partial F$) — дипольный момент ДУС; $\mu' = (\Delta_0/E)$ m — дипольный момент перехода, описывающий переходы между уровнями ДУС.

При рассмотрении динамики ДУС используют формальную аналогию между двухуровневой системой и частицей со спином 1/2. Решение уравнений Блоха для компонент матрицы плотности ДУС позволяет определить значения феноменологически введенных времен продольной T_1 и поперечной T_2 релаксации [⁵]. Первое из них связано с переворотом спина, т. е. переходом ДУС из одного состояния в другое. Время поперечной релаксации определяет время сбоя фазы системы, который может происходить за счет как обычной релаксации, так и бездиссипативного спин-спинового взаимодействия разных ДУС.

В приведенной схеме явление спектральной диффузии учитывается соответствующим выбором величины T_2 , что, вообще говоря, является непоследовательным и может привести в некоторых случаях к заведомо неверным результатам [⁷].

Чтобы лучше представить физическую картину явления, рассмотрим, какие параметры характеризуют спектральную диффузию [6]. Взаимодействие переменного поля частоты ω и резонансной ДУС с расстоянием между уровнями $e=\hbar\omega$ характеризуется матричным элементом $\hbar \mathbf{F}=$ $=\mu'F_0$, где F_0 — амплитуда поля. Заметим, что величина F есть не что иное, как частота Раби для ДУС, и характеризует частоту когерентных осцилляций заселенности ДУС под действием резонансного возмущения. Величина γ определяет ширину уровней резонансной ДУС и обусловлена испусканием и поглощением фононов с энергией e. Тепловые ДУС совершают переходы (скачки) с частотой $\Gamma \simeq D^2 T^3/g\hbar^4 v^5$, где D — деформпотенциал ДУС, g — плотность стекла, v — средняя скорость звука, T — абсолютная температура. Характерная величина изменения энергии резонансной ДУС из-за спектральной диффузии порядка $E_d \equiv \hbar \tau_d = D^2 N_0 T/$ gv^2 (N_0 — не зависящая от энергии плотность ДУС).

2. Описание модели и результаты расчета

Моделируемая система состоит из помещенной в центр некоторого объема V резонансной ДУС и N равномерно распределенных в объеме V тепловых ДУС, радиус-векторы г. которых определяются тройкой чисел (x_i, y_i, z_i) , задаваемых генератором псевдослучайных чисел. При этом среднее расстояние между тепловыми ДУС $r_0 = (3V/4\pi N)^{4}$. Изменение собственной частоты резонансной ДУС, обусловленное взаимодействием с тепловыми соседями, равно

$$\hbar\Delta\omega(t) = e(t) - e(0) = \sum_{i} E_{d}(r_{0}/r_{i})^{3}\xi_{i}(t).$$

Здесь $\xi_i(t)$ — случайная функция времени, описываемая телеграфным процессом. Она попеременно принимает значения +1 и —1 в случайные моменты времени с частотой Г. Различные функции ξ_i мы считаем некоррелированными.

В течение временного интервала Δt выбранная случайным образом тепловая ДУС совершает скачок. На следующем шаге переворачивается какая-нибудь другая (или та же самая) ДУС и т. д. На каждом шаге для заданной величины отстройки $z = \omega - e/\hbar$ решается система уравнений

$$\dot{n} = -\gamma (n - n_0) - F \operatorname{Re} f, \quad \operatorname{Re} f = F (n - 1/2) + s \operatorname{Im} f - \gamma/2 \operatorname{Re} f,$$
$$\operatorname{Im} f = -s \operatorname{Re} f - \gamma/2 \operatorname{Im} f \tag{3}$$

для диагональной *п* и недиагональной *f* компонент матрицы плотности резонансной ДУС

$$\begin{pmatrix} n & -ife^{i\omega t} \\ if^*e^{-i\omega t} & 1-n \end{pmatrix}.$$

В (3) $n_0 = [\exp(e/T-1]^{-1} - paвновесная заселенность верхнего уровня$ резонансной ДУС. При решении системы (3) мы исходили из того, чтов промежутках между переворотами тепловых ДУС*s*=const и система (3)имеет аналитическое решение. Входящие в уравнения (3) параметры*F*, $<math>\gamma$, Г являются величинами случайными, и по ним проводилось усреднение. Так, величина *F* пропорциональна амплитудному значению поля и величине дипольного момента ДУС

$$F = F_0 m \cos\left(\widehat{\mathbf{Fm}}\right) \sqrt{p} \cdot \tag{4}$$

Мы выбирали случайным образом угол $\varphi = 2$ (Fm), находили *p* (см. ниже) и, согласно (4), значение *F*, а результаты окончательно усредняли для различных *F*.

Распределение по Г (т. е. фактически по туннельной прозрачности тепловых ДУС) имеет вид

$$c(\Gamma) = 1/\Gamma \sqrt{1 - \Gamma/\Gamma_{\max}}, \qquad (5)$$

где Г_{иах} — максимальная частота скачков тепловой ДУС. Замена выражения под корнем единицей, как можно показать, не отразится существенным образом на результатах. То же относится и к распределению по γ . Чтобы разыграть случайные величины Г и γ , воспользуемся приемом, часто применяемым в методе Монте-Карло [⁸]. А именно случайную величину ψ с известным распределением можно найти из уравнения ψ

∫ c (x) dx = η, выбрав очередное значение равномерно распределенной в интервале (0—1) случайной величины η. Воспользовавшись распределением (5), получим

$$\Gamma = \Gamma_{\min} \exp\left[-\eta \ln\left(\Gamma_{\min}/\Gamma_{\max}\right)\right],$$

где Γ_{\min} , Γ_{\max} — минимальная и максимальная из частот скачков тепловой ДУС. Аналогично выглядит и выражение для получения величины γ . Параметр *р* при этом определяется по формуле $p = \gamma / \gamma_{\max}$. Наконец, результаты расчетов усреднялись по конфигурациям тепловых ДУС.

Нами проведены расчеты для следующих вариантов диэлектрического эха: двухимпульсного, трехимпульсного, ротационного и двухимпульсного ротационного. В случае двухимпульсного (спонтанного) эха (рис. 1) импульс включался в течение времени т_о, затем на протяжении временно́го интервала $\tau_{12} > \tau_p$ отключался и снова включался на время τ_p . Сигнал эка наблюдался в момент времени 2 ($\tau_p + \tau_{12}$). Сигнал стимулиро-

Рис. 1. Зависимость амплитуды A двухимпульсного эха от времени задержки τ_{12} между импульсами при $E_d=0$ (1), 0.5 (2), 2.0 (3).

ванного (трехимпульсного) эха наблюдался в момент времени $3\tau_p + 2\tau_{12} + \tau_{13}$, если в описанной выше схеме эксперимента через время τ_{13} после второго импульса подается третий импульс (рис. 4).

Рис. 2. Влияние спектральной диффузии на величину аплитуды ротационного эха. $E_d=0$ (1), 0.5 (2), 5 (3), 8 (4), 10 (5).

Двухимпульсное ротационное эхо отличается от спонтанного тем, что второй импульс включается с фазой — *F* и сигнал эха наблюдается на фоне включенного импульса. Он имеет характерный вид, проходя через

Рис. 3. Зависимость амплитуды двухимпульсного ротационного эха от времени задержки τ_{12} . $E_d=0$ (1), 5(2), 10(3).

нуль при $t=2\tau_p+\tau_{12}$ (рис. 3). Ротационное эхо моделируется аналогично двухимпульсному ротационному с той лишь разницей, что фаза поля инвертируется без выключения импульса (рис. 2). Два последних типа эха недавно наблюдались в стеклах в эксперименте Баера и Шикфуса [⁵].

Расчеты проводились при следующих значениях параметров модели: число тепловых ДУС N=50; объем, в котором они сгенерированы, V=8; число конфигураций, по которым проводилось усреднение, K=20; шаг интегрирования по отстройке $\Delta z = 0.5$. Значения параметров Γ_{\min} , Γ_{\max} , Υmin, Ymax равнялись в безразмерных единицах соответственно 0.1, 10, 0.01. 1. Величина E_d выбиралась в пределах 0.1-10, F₀=20. Временные интервалы измерялись в единицах $(\Gamma_{\max}N)^{-1}$.

Результаты расчетов приведены на рис. 1-4. На вставках изображены схемы формирования эха и качественный вид сигнала. Видно, что наиболее сильно спектральная диффузия влияет на амплитуду двухимпульсного эха. Менее чувствительно к спектральной диффузии ротационное эхо. Наименее подвержены влиянию спектральной диффузии двухимпульсное ротационное и трехимпульсное эха.

Рис. 4. Спад амплитуды стимулированного эха от расстояния между первым и третьим импульсами τ_{13} . $E_d = 0$ (1), 0.5 (2), 1.0 (3).

Из результатов расчета следует, что спектральная диффузия играет важную роль в затухании сигналов ротационного и двухимпульсного эха (рис. 1, 2) и ее влияние гораздо менее выражено в случаях двухимпульсного ротационного и трехимпульсного эха (рис. 3, 4). Последнее отмечалось также в работе [5].

Во всех исследованных случаях в пределах погрешности расчета затухание носит экспоненциальный характер. Следует, однако, отметить, что при расчете не учитывалось влияние туннельной прозрачности резонансных ДУС на величину их взаимодействия с тепловыми ДУС. Учет этого взаимодействия может (как это показано в [9]) привести к неэкспоненциальному спаду амплитуды эха.

Список литературы

- [1] Amorphous Solids. Low Temperature Properties // Ed. W. A. Phillips. Berlin-Heidelberg-New York: Springer-Verlag, 1981. 165 p.
 [2] Anderson P. W., Halperin B. I., Varma C. M. // Phil. Mag. 1972. V. 25. N 1. P. 1-9.
 [3] Phillips W. A. // J. Low Temp. Phys. 1972. V. 7. N 2. P. 351-357.
 [4] Карнов В. Г., Клингер М. И., Игнатьев Ф. Н. // ЖЭТФ. 1983. Т. 84. № 2. С. 761-277.

- 775.
- [5] Baier G., Schickfus M. V. // Phys. Rev. B. 1988. V. 38. N 14. P. 9952—9957.
 [6] Galperin Yu. M., Gurevich V. L., Parshin D. A. // Phys. Rev. B. 1988. V. 37. N 17.
- P. 10339-10349.
- [7] Laikhtman B. D. // Phys. Rev. B. 1985. V. 31. N 6. P. 3555—3559.
 [8] Бусленко Н. П.,, Голенко Д. И., Соболь И. М. и др. Метод статистических испытаний (метод Монте-Карло). М.: ГИФМЛ, 1962. 332 с.
 [9] Гуревич В. Л., Мурадов М. И., Паршин Д. А. // ЖЭТФ. 1990. Т. 97. № 5. С. 2114—
- 2126.

Криворожский государственный педагогический институт Поступило в Редакцию 15 мая 1990 г.