1991	ФИЗИКА	ТВЕРДОГО ТЕЛА	Том 33,	$\mathcal{N} \mathcal{Z}$
1991	SOLID	STATE PHYSICS	Vol. 33,	<u>N</u> 2

УДК 536.48: 537.874.72 © 1991

МОДЕЛИРОВАНИЕ НА ЭВМ СПЕКТРАЛЬНОЙ ДИФФУЗИИ В СТЕКЛАХ. ЯВЛЕНИЕ «ВЫЖЖЕННОЙ ДЫРЫ» И НЕЛИНЕЙНОЕ РЕЗОНАНСНОЕ ПОГЛОЩЕНИЕ

Д. А. Паршин, В. Н. Соловьев

Проведен численный анализ влияния спектральной диффузии на нелинейное резонансное поглощение и выжженную дыру в стеклах, обусловленных двухуровневыми системами. Показано, что в стационарном случае при больших интенсивностях коэффициент поглощения обратно пропорционален интенсивности падающей волны. В нестационарном режиме при малых длительностях импульса имеет место корневая зависимость коэффициента поглощения от интенсивности. Ширина выжженной дыры определяется спектральной диффузией и практически не зависит от интенсивности. Для типичных экспериментальных условий форма дыры является лоренцевой.

Известно, что многие свойства стекол при низких температурах обусловлены существованием в них так называемых двухуровневых систем (ДУС) [¹]. В настоящей работе приведены данные численных расчетов нелинейного резонансного поглощения и выжженной дыры. Теория этих явлений в стационарном случае при малых интенсивностях построена в работах [^{2, 3}], а с учетом накопления резонансных фононов — в [^{4, 5}]. Количественная теория этих эффектов при больших интенсивностях, однако, развита недостаточно. Связано это в первую очередь с тем, что они осложнены явлением спектральной диффузии.

Впервые оно обсуждалось в теории магнитного резонанса Клаудером и Андерсоном [⁶]. При исследовании низкотемпературной кинетики диэлектрических стекол аналогичный подход использовали Жоффрен и Левлю [⁷], Хунклингер и Арнольд [⁸], Блэк и Халперин [⁹], Голдинг и Грабнер [¹⁰], Лайхтман [¹¹].

Явление спектральной диффузии состоит в следующем. Каждая ДУС создает вокруг себя поле деформаций, величина которых зависит от того, в каком энергетическом состоянии (верхнем или нижнем) находится данная ДУС. Наиболее важны так называемые тепловые ДУС с энергией $E \leqslant T$. Под влиянием тепловых фононов они постоянно совершают переходы (скачки) из одного состояния в другое. Поэтому поле деформаций, создаваемое ими вокруг, флуктуирует во времени. В свою очередь энергия любой ДУС меняется при деформации. Поэтому переходы в окружающих ее тепловых ДУС приводят к тому, что эта энергия также флуктуирует во времени. Случайное изменение со временем энергии ДУС за счет взаимодействия с другими ДУС и получило название спектральной диф-фузии.

Ниже мы с помощью численного моделирования на ЭВМ рассмотрим влияние спектральной диффузии на зависимость коэффициента резонансного поглощения от интенсивности и форму выжженной дыры. Напомним, что выжженной дырой называют [⁸] уменьшение коэффициента поглощения слабого пробного сигнала на частоте ω_1 при наличии сильного на частоте ω в зависимости от расстройки $\omega - \omega_1$. Пекоторые из результатов настоящей работы были кратко изложены в [¹²].

1. Качественная картина

Чтобы лучше представить физическую картину, рассмотрим, какие параметры характеризуют явление спектральной диффузии [³]. Взаимодействие переменного поля частоты ω и резонансной ДУС с расстоянием между уровнями $e=\hbar\omega$ характеризуется матричным элементом $\hbar F/2$ для перехода между уровнями. Явные выражения для F зависят от того, рассматривается ли взаимодействие с ультразвуком или же с переменным электрическим полем. Величина F есть не что иное, как частота Раби для ДУС, и характеризует частоту когерентных осцилляций заселенности ДУС под действием резонансного возмущения. Другим параметром теории является ширина $\hbar\gamma$ уровней резонансной ДУС, обусловленная испусканием и поглощением фононов с энергией e. Энергия взаимодействия резонансной ДУС с тепловыми ДУС имеет характерную величину $\hbar/\tau_d \simeq D^2 P T/\rho v^2$, где P — постоянная, не зависящая от энергии плотность состояний ДУС в стекле; ρ — плотность стекла; v — средняя скорость звука; D — деформационный потенциал. Наконец, частота скачков тепловых ДУС равна $\Gamma_0 \simeq D^2 T^3/\rho \hbar^4 v^5$.

Как мы увидим, важную роль во всем явлении спектральной диффузии играет соотношение между $1/\tau_d$ и Γ_0 . Появление в теории безразмерного параметра $\Gamma_0 \tau_d$ можно пояснить следующим образом. На малых временах $t \ll \Gamma_0^{-1}$ уход собственной частоты резонансной ДУС от резонанса происходит со временем по линейному закону

$$|e(t) - e(0)| \simeq \hbar \Gamma_0 t / \tau_d. \tag{1}$$

Происхождение этой формулы следующее [¹¹]. Рассмотрим объем с линейными размерами порядка r_t , окружающий резопансную ДУС. В этом объеме имеется $\simeq PTr_t^3$ тепловых ДУС с характерными частотами перехода порядка Γ_0 . Скачок хотя бы одной тепловой ДУС в данном объеме к моменту времени t происходит с вероятностью порядка единицы, если r_t удовлетворяет условию $\Gamma_0 t PTr_t^3 \approx 1$. Соответствующее этому скачку характерное изменение энергии резонансной ДУС есть

$$D^2/
ho v^2 r_t^3 pprox \hbar \Gamma_0 t/ au_d$$
 .

Отсюда непосредственно и следует (1). На рис. 1, *а*—в приведены зависимости собственной частоты резонансной ДУС от времени за счет взаимодействия с тепловыми соседями, получающееся в процессе моделирования (см. раздел 2). Видно качественное согласие с зависимостью (1).

В результате характерное время сбоя фазы волновой функции резонансной ДУС τ_{φ} есть

$$\tau_{\varphi} \simeq \sqrt{\tau_d/\Gamma_0}.$$
 (2)

Выражение (2) справедливо, если это время много меньше характерного времени между скачками $1/\Gamma_0$, т. е.

$$\Gamma_0 \tau_d \ll 1. \tag{3}$$

При $\Gamma_0 \tau_d \gg 1$ за время $t \ll \Gamma_0^{-1}$ фаза резонансной ДУС успевает измениться только на малую величину, т. е. не успевает сбиваться. Таким образом, характерное время сбоя фазы $\tau_{\varphi} \gg \Gamma_0^{-1}$. С другой стороны, на больших временах $t \gg \Gamma_0^{-1}$ характерное значение расстройки (рис. 1, a - e) перестает зависеть от времени, поскольку разность |e(t) - e(0)| не может по порядку величины превысить характерную величину \hbar/τ_d . Иными словами, расстройка в этом случае блуждает случайным образом по интервалу \hbar/τ_d . Соответственно время сбоя фазы τ_{φ} определяется спектральной шириной этого интервала и имеет порядок $\tau_{\infty} \simeq \tau_d \gg \Gamma_0^{-1}$.

Рис. 1. Изменение со временем основных характеристик процесса резонансного поглощения для случая низких температур $\gamma \ll \Gamma_0 \ll \sqrt{\Gamma_0/\tau_d}$ (*a*), квантового случая $\Gamma_0 \ll \gamma \ll \sqrt{\Gamma_0/\tau_d}$ (*b*) и $\Gamma_0 \gg 1/\tau_d \gg \gamma$ (*b*).

1 — собственная частота резонансной ДУС е (i); 2 — вещественная часть недиагональной компоненты матрицы плотности Re f (t), 3 — изменение заселенности верхнего уровня резонансной ДУС » относительно равновесного значения n_o. Заено гистограммы соответствует перевороту случайно выбранной тедловой ДУС в течение времени Δl=1/Г₀N.

Из этих рассуждений следует, что существуют две области — высоких и низких температур по сравнению с характерной температурой T_D . Последняя определяется из условия равенства единице характерного параметра $\Gamma_0 \tau_s$

$$T_D = (p\hbar^3 v^3)^{1/2}.$$
 (4)

Эта температура была введена в [^{11, 13}]. Ее типичное значение для диэлектрических стекол 0.1—1 К.

В пренебрежении взаимодействием между ДУС и связанным с ним явлением спектральной диффузии коэффициент резонансного поглощения α определяется соотношением между величиной F и собственным затуханием резонансной ДУС γ . Коэффициент поглощения пропорционален произведению разности заселенностей нижнего и верхнего уровней ДУС на спектральную ширину линии поглощения. При $F \ll \gamma$ разность заселенностей в нулевом приближении не зависит от F и определяется своим равновесным значением, а контур линии поглощения — лоренцевский с шириной γ . Коэффициент поглощения описывается в том же приближении линейной теорией; в следующем приближении возникает поправка по параметру $(F/\gamma)^2$.

Если же $F \gg \gamma$, то разность заселенностей убывает обратно пропорционально F^2 , т. е. интенсивности, а ширина области резонанса вследствие осцилляций Раби растет $\sim F$ (так называемое динамическое уширение спектральной линии). В результате оказывается, что коэффициент поглощения обратно пропорционален F. Таким образом, критическая амплитуда F_o , определяющая нелинейные эффекты, в этом случае равна γ . Соответственно ширина выраженной дыры порядка γ при $F \ll F_c$ и порядка F при $F \gg F_c$.

Оценим теперь критическую амплитуду F_{c} в тех случаях, когда существенна спектральная диффузия.

Случай низких температур, $T \ll T_D$ ($\Gamma_0 \tau_d \ll 1$). Здесьможно выделить два предельных случая, когда важна спектральная диффузия

$$\Gamma_0 \ll \gamma \ll \sqrt{\Gamma_0/\tau_d}, \quad \gamma \ll \Gamma_0 \ll \sqrt{\Gamma_0/\tau_d}. \tag{5), (6)}$$

В первом из них критическая интенсивность определяется из условия, что за время 1/F порядка периода осцилляций Раби энергия резонансной ДУС уходит за счет спектральной диффузии в соответствии с (1) на величину порядка F. Отсюда получается оценка для критической амплитуды

$$F_c \simeq \sqrt{\Gamma_0/\tau_d}.$$
 (7)

Оценка для ширины выжженной дыры получается при этом из следующих соображений. Резонансная ДУС, проходя область резонанса пириной порядка $\sqrt{\Gamma_0/\tau_d}$, возбуждается при $F \ge F_c$ с вероятностью порядка единицы. Затем она выходит из резонансной области, оставаясь в возбужденном состоянии еще время $t \simeq \gamma^{-1} \ll \Gamma_0^{-1}$ (кривая 2 на рис. 1, *a*). Подставляя это время в (1), мы приходим к выводу, что ширина выжженной дыры при этом оказывается порядка $\Gamma_0/\gamma\tau_d$.

Во втором случае оценку критической интенсивности можно получить на основе следующей качественной картины [¹¹]. Область случайных изменений собственной частоты резонансной ДУС $1/\tau_d$ в данном случае гораздо больше ширины резонанса $\sqrt{\Gamma_0/\tau_d}$. При случайных изменениях собственной частоты резонансая ДУС многократно возвращается в резонансную область. Всякий раз при этом происходит возвращается в реленности на малую величину $F^2 \tau_{\varphi}^2 = F^2 \tau_d / \Gamma_0 \ll 1$ (кривая 2 на рис. 1, 6). Общее число таких возвратов за время «жизни» $1/\gamma$ есть Γ_0/γ , и, таким образом, полное изменение заселенности за это время есть $(F^2 \tau_d / \Gamma_0) (\Gamma_0/\gamma)$. Приравнивая эту величину единице, мы приходим к оценке для F_d

$$F_{c} \simeq \sqrt{\gamma/\tau_{d}}.$$
(8)

Іирина выжженной дыры получается порядка 1/г_л.

Случай высоких температур, $T \gg T_D$ ($\Gamma_0 \tau_d \gg 1$). Спекральная диффузия важна здесь при

$$\Gamma_0 \gg 1/\tau_d \gg \gamma. \tag{9}$$

Зследствие частых скачков тепловых пар все резонансные ДУС из спекрального интервала шириной $1/\tau_d$ оказываются неравновесными (кривая 2 на рис. 1, в). При этом характерная скорость изменения заселенности эсть $F^2\tau_d$, а скорость релаксации за счет тепловых фононов есть γ . Сравнение этих величин дает оценку

$$F_{c} \simeq \sqrt{\gamma/\tau_{d}}, \qquad (10)$$

в то время как ширина выжженной дыры равна ширине области спектральной диффузии $1/\tau_d$, что в свою очередь много больше F_c .

Теоретические расчеты, проведенные в $[^{3, 5}]$, а также проводимые ниже численные оценки удовлетворительно согласуются с оценками (7), (8) и (10).

2. Описание модели и основные уравнения

Рассмотрим систему из N равномерно распределенных в объеме V тепловых ДУС. Радиус-вектор r_i *i*-й тепловой ДУС определяется тройкой чисел (x_i, y_i, z_i) , задаваемой генератором псевдослучайных чисел (ГПЧ). В начало системы координат поместим резонансную ДУС. Среднее расстояние между тепловыми ДУС $r_0 = (3V/4\pi N)^{V_s}$. Изменение собственной частоты резонанской ДУС, обусловленное взаимодействием с тепловыми соседями, равно

$$\hbar\Delta\omega(t) \equiv e(t) - e(0) = \sum_{i} \hbar \mathcal{J}_{i}\xi_{i}(t).$$
⁽¹¹⁾

Здесь $\xi_i(t)$ — случайная функция времени, описываемая телеграфным процессом. Она попеременно принимает значения +1 и -1 в случайные моменты с частотой Γ_0 . Различные функции $\xi_i(t)$ мы считаем некоррелированными. $\mathcal{J}_i = D^2/\hbar\rho v^2 r_i^3$, где r_i — расстояние от *i*-й тепловой ДУС до резонансной. Заметим, что характерная энергия $E_d = (\hbar/\tau_d) \sim \hbar \mathcal{J}(r_0)$. Обозначим $z = \omega - e/\hbar$ величину расстройки резонансной ДУС.

В течение временно́го интервала Δt случайно выбранная ГПЧ тепловая ДУС совершает скачок. На следующем шаге переворачивается какаянибудь другая (или та же самая) тепловая ДУС и т. д. На каждом шаге *i* для данного *z* решается система уравнений для диагональной *n* и недиагональной *f* компонент матрицы плотности резонансной ДУС [^{2, 3}]

$$\frac{\partial n}{\partial t} = -\gamma (n - n_0) - F \operatorname{Re} f,$$

$$\frac{\partial \operatorname{Re} f}{\partial t} = F (n - 1/2) + s \operatorname{Im} f - (\gamma/2) \operatorname{Re} f,$$

$$\frac{\partial \operatorname{Im} f}{\partial t} = -s \operatorname{Re} f - (\gamma/2) \operatorname{Im} f.$$
 (12)

Здесь $n_0 = [\exp(e/T) + 1]^{-1}$ — равновесная заселенность верхнего уровня резонансной ДУС; $s = z - \Delta \omega$ (t).

Для численного решения системы (12) нами была использована неявная схема интегрирования. Для уравнения $du/dt + \psi$ (u, t)=0 она имеет вид $u^{i+1} = u^i - (\Delta t/2)(\psi^i + \psi^{i+1})$ [¹⁴].

В моменты времени $t_k = kt$ (k=1, 2, ...) находятся средние

$$\langle \operatorname{Re} f \rangle_{k} = \frac{\Delta t}{kt} \sum_{i=1}^{kt/\Delta t} \operatorname{Re} f^{i},$$
 (13)

335

$$\langle n - n_0 \rangle_k = \frac{\Delta t}{k\bar{t}} \sum_{i=1}^{k\bar{t}|\Delta t} (n^i - n_0), \qquad (14)$$

где t — отрезок времени, на котором производится усреднение. Проверяется также неравенство, следующее из первого уравнения (12) в стационарном случае

$$\langle \operatorname{Re} f \rangle_k = (-\gamma/F) \langle n - n_0 \rangle_k.$$
 (15)

Если средние (13), (14) на k-м и (k+1)-м отрезках времени в пределах заданной точности равны, а также с той же степенью точности выполняется равенство (15), то определяется «стационарный» коэффициент поглещения для резонансной ДУС с фиксированной расстройкой z

$$\alpha(z) = (-2/F) \langle \operatorname{Re} f \rangle. \tag{16}$$

Далее расчет производится для другого z и суммарный коэффициент поглощения α (F) для заданной конфигурации тепловых ДУС находится интегрированием α (z) по всем z, дающим существенный вклад. Затем расчет повторяется для новой случайной конфигурации тепловых ДУС и результаты усредняются по конфигурациям.

Для формы выжженной дыры имеем

$$\Delta Q = \langle \int de \Delta n_{\omega - e/\hbar}(t) \,\delta\left(\omega_1 - e/\hbar - \Delta \omega\left(t\right)\right) \rangle_t =$$
$$= \langle \Delta n_{\omega - \omega_1 + \Delta \omega\left(t\right)}(t) \rangle_t \equiv \Delta Q\left(\omega - \omega_1\right), \tag{17}$$

где ω_1 — частота пробного импульса малой интенсивности в присутствии сигнала накачки, вызывающего изменение заселенности $\Delta n_s(t) = n - n_0$ в момент времени t для резонансной ДУС с расстройкой z. Из (17) следует алгоритм расчета. Действительно, найдем $\Delta n_s(t)$ для всех возможных значений отстройки z. Тогда, согласно (17), для каждого момента времени следует выбрать такое Δn , для которого имеет место равенство $\omega - \omega_1 + \Delta \omega$ (t) = z. Интеграл по всем t для выбранного таким образом Δn и определяет форму выжженной дыры.

Расчеты проводились для следующего набора данных: число тепловых ДУС N=50; объем, в котором они сгенерированы, V=8; число конфигураций, по которым проводится усреднение, 20; шаг при интегрировании по расстройке $\Delta z=0.5$. Значения параметров Γ_0 , γ , $1/\tau_d$ определяются конкретным вариантом расчета. Относительная погрешность не превышала 5 %.

3. Результаты расчета

Ниже приведены результаты численного моделирования.

Нелинейное резонансное поглощение. Стационарный случай. Результаты расчетов в тех ситуациях, когда важна спектральная диффузия (см. (5), (6), (9)), приведены на рис. 2. Кривая Iимеет место при низких температурах ($T \ll T_D$) и соотношении параметров

$$\gamma \ll \Gamma_0 \ll \sqrt{\Gamma_0/\tau_d}.$$

Расчеты проведены для значений параметров $\Gamma_0 = 1$, $\gamma = 0.1$, $1/\tau_d = 10$. Шаг интегрирования по времени $\Delta t = 1/\Gamma_0 N$. Критическая интенсивность определялась по уровню 0.5 от значения коэффициента поглощения при $F \rightarrow 0$. Найденное значение критической интенсивности $F_c \simeq 1$ совпадает с оценкой (8).

Другой важный низкотемпературный случай (5)

$$\Gamma_0 \ll \gamma \ll \sqrt{\Gamma_0/\tau_d}$$

336

иллюстрирует кривая 2 (рис. 2). Здесь $\Gamma_0 = 0.02$, $\gamma = 0.1$, $1/\tau_d = 10$. Соответствующее значение критической интенсивности $F_c \simeq 0.5$. (Оценка (7) дает величину того же порядка $\simeq 0.45$).

Заметим, что на этой кривой имеется еще один излом при значении амплитуды $F \simeq 2$, что совпадает по порядку величины с шириной выжженной дыры в этом случае $\Delta v \simeq \Gamma_0 / \gamma \tau_d$. Причину этого излома можно объяснить следующим образом. Как сле-

дует из формул (15), (16), стационарный коэффициент поглощения α (z)

$$\alpha(z) = (2\gamma/F^2) \langle n - n_0 \rangle_t,$$

т. е. пропорционален среднему во времени отклонению заселенности верхнего уровня n от его равновесного значения n_0 .

Значение $\langle n-n_0 \rangle_i$ в этом случае можно оценить из следующих соображений. Мы видим (см. раздел 1), что резонансная ДУС изменяет свою заселенность в резонансной области шириной $\hbar \sqrt{\Gamma_0/\tau_d}$, которая проходится -4

Рис. 2. Зависимость коэффициента нелинейного резонансного поглощения от интечсивности для $\gamma \ll \Gamma_0 \ll \sqrt{\Gamma_0/\tau_d}$ (1), $\Gamma_0 \ll \ll \gamma \ll \sqrt{\Gamma_0/\tau_d}$ (2), $\Gamma_0 \gg 1/\tau_d \gg \gamma$ (3).

Штриховая линия — зависимость $\alpha \sim F^{-1}$, штрихпунктирная — $\alpha \sim F^{-2}$. Стрелками отмечены критические интенсивности.

за время $\sqrt{\tau_d/\Gamma_0}$. Она существует в возбужденном состоянии время $\simeq \gamma^{-1} \gg \sqrt{\tau_d/\Gamma_0}$, после чего девозбуждается, испуская фонон. Все остальное время (пока она проходит область спектральной диффузии шириной $\simeq \hbar/\tau_d$) у нее $n=n_0$. Возвращается она в резонансную область через время $\simeq \Gamma_0^{-1} \gg \gamma^{-1}$. Таким образом, доля времени, проводимая резонансной ДУС в возбужденном состоянии (т.е. с n=1/2), порядка $\Gamma_0/\gamma \ll 1$. Отсюда для всех z, лежащих в интервале шириной $1/\tau_d$ вблизи резонанса,

$$\langle n - n_0 \rangle_t \simeq (1/2 - n_0) (\Gamma_0/\gamma)$$

и коэффициент поглощения оказывается обратно пропорционален интенсивности а ~ 1/F². Этот вывод справедлив в диапазоне интенсивностей

$$F_c < F < \Delta v$$

и хорошо подтверждается численным расчетом.

При бо́льших значениях интенсивности $F > \Delta \nu$ физическая картина несколько иная. Теперь резонансная ДУС находится в возбужденном состоянии время $\simeq F \tau_d / \Gamma_0 \gg \gamma^{-1}$. Поэтому

$$\langle n-n_0 \rangle_t \simeq (1/2-n_0) F \tau_d$$

и в результате при $F > \Delta \nu$ коэффициент поглощения $\alpha \sim 1/F$, что коррелирует с результатами численного моделирования ($\alpha \sim 1/F^{1\cdot 4}$).

Кривая 3 (рис. 2) получена в случае высоких температур ($T \gg T_D$) при

$$\Gamma_0 \gg 1/\tau_d \gg \gamma$$
,

где $\Gamma_0 = 0.5$, $\gamma = 0.02$, $1/\tau_d = 0.1$. Для F_o имеем величину порядка 0.05.

Однако сравнивать эту величину с оценкой (10) нельзя, поскольку существенную роль при получении этой оценки играет разброс частот скачков Го тепловых ДУС в стеклах, который не учитывался при численном

2 Физика твердого тела, вып. 2, 1991 г.

моделировании. А именно частота Γ_0 считалась одинаковой для всех тепловых ДУС. В такой ситуации при условии $\Gamma_0 \gg 1/\tau_d$ имеет место явление динамического сужения спектральной линии и критическая интенсивность определяется скачками ближайших к резонансной тепловых ДУС [¹³]

$$F_c \simeq \sqrt{\gamma (1/\tau_d)^2/\Gamma_0} \simeq 0.02.$$

Это по порядку величины коррелирует с результатами численного расчета. Зависимость коэффициента поглощения от интенсивности в этом случае (как следует из [¹³]) должна следовать закону $\alpha \sim 1/F$, что также находится в неплохом согласии с расчетом, из которого следует, что в стационарном режиме $\alpha \sim 1/F^{1.3}$.

Как было показано в работе [³], из качественных рассуждений в стационарном случае при учете разброса частот скачков тепловых ДУС при

интенсивностях выше критической (10) $\alpha \sim 1/F^2$.

Одним из важных результатов рассмотрения стационарного режима в случаях (5) и (6) является обратно пропорциональная зависимость коэффициентов поглощения от интенсивности, $\alpha \sim F^{-2}$. Отметим, что из уравнения Блоха следует закон $\alpha \sim F^{-1}$, т. е. коэффициент поглощения обратнопропорционален корню из интенсивности.

Из рис. 2 видно, что настоящие данные для стационарного нелинейного поглощения не позволяют объяснить наблюдавшуюся в ряде опытов при

Рис. 3. Зависимость α (F) в нестационарном случае при $t = \Gamma_0^{-1}/10$ (I), $\Gamma_0^{-1}/5$ (2), Γ_0^{-1} (3), $4\Gamma_0^{-1}$ (4).

низких температурах зависимость а (F) $\sim F^{-1}$ [¹⁵]. Как отмечалось в [¹¹], дело, видимо, заключается в том, что в выполненных экспериментах длительность импульса была достаточно малой, так что не устанавливалось настоящего стационарного режима. Об этом, в частности, свидетельствует работа [¹⁶], в которой наблюдалась зависимость нелипейного поглощения звука от длительности акустического импульса.

С целью проверки последнего предложения были проведены расчеты нелинейного коэффициента поглощения в нестационарном случае.

Нестационарный случай. В нестационарном режиме усреднение (13) и расчет коэффициента поглощения (16) производились для текущего значения времени $t=(1, 2, ...) \Delta t$. В качестве примера на рис. З приведена зависимость α (F) для случая (6) для тех же значений параметров, $\gamma=0.1$ $\Gamma_0=1$, $1/\tau_a=10$,

$$\gamma \ll \Gamma_0 \ll \sqrt{\Gamma_0/\tau_d}$$
.

Видно, что на малых временах (длительностях импульса) $t < (1/\gamma, 1/\Gamma_0)$ для коэффициента поглощения имеет место зависимость $\alpha \sim F^{-1}$, тогда как начиная с времен $t > 1/\Gamma_0$ зависимость коэффициента поглощения от интенсивности стремится к виду $\alpha \sim F^{-2}$.

Выжженная дыра. Форма выжженной дыры исследована для тех же случаев и с теми же наборами параметров, что и стационарное нелинейное поглощение. Полученные результаты для до- и закритической интенсивности приведены на рис. 4. Для случая (6) оценка ширины выжженной дыры дает $\Delta Q \simeq 1/\tau_d \simeq 10$. Из результатов расчетов имеем: при $F < F_c \Delta Q \simeq 8$, при $F > F_c \Delta Q \simeq 5$. Форма выжженной дыры лоренцева.

В случае (5) значения ширины дыры выше теоретической оценки ($\Delta Q \simeq \simeq 2$): при $F < F_c \ \Delta Q \simeq 4 \div 5$, при $F > F_c \ \Delta Q \simeq 5$. Форма дыры не является лоренцевой.

При высоких температурах для ширины выжженной дыры получены значения $\Delta Q \simeq 0.3 \div 0.4 \ (F < F_c)$, $\Delta Q \simeq 0.3 \div 0.5 \ (F > F_c)$. Как и в случае (6), форма выжженной дыры лоренцева.

Заметим, что во всех исследованных случаях ширина выжженной дыры очень слабо зависит от интенсивности, что находится в согласии с имеющимися экспериментальными данными.

Рис. 4. Форма выжженной дыты при $F > F_{c}$ (1—3) и $F < F_{c}$ (1—3'). 1, 1' — $\gamma \ll \Gamma_{1} \ll \sqrt{\Gamma_{1}/\tau_{d}}$, F'=0.2, F=2: 2, 2' — $\Gamma_{0} \ll \gamma \ll \Gamma_{0}/\tau_{d}$, F'=0.2, F=2; 3, 3' — $\Gamma_{0} \gg 1/\tau_{d} \gg \gamma$, F'=0.01, F=0.1. (Разность $\omega - \omega$ — в отн. ед.).

4. Обсуждение результатов

Таким образом, спектральная диффузия играет важную роль в явлениях нелинейного поглощения и выжженной дыры в диэлектрических стеклах. Рассматриваемые явления моделаруются системой «резонансная ДУС+ансамбль тепловых ДУС» в приближении скачкообразных перескоков тепловых ДУС и определяются соотношением трех величин: энергии взаимодействия \mathcal{J} (r_0) обеих ДУС (порядка ширины области спектральной диффузии $1/\tau_d$), частоты перескоков тепловых ДУС Γ_0 и собственной ширины линии поглощения γ резонансной ДУС.

В зависимости от значения характерного параметра $\Gamma_0 \tau_d$ существуют две области — высоких и низких температур по сравнению с характерной температурой T_D . При $\Gamma_0 \tau_d \ll 1$ (область низких температур) спектральная диффузия важна в двух предельных случаях соотношения параметров: $\gamma \ll \Gamma_0 \ll \sqrt{\Gamma_0/\tau_d}$ и $\Gamma_0 \ll \gamma \ll \sqrt{\Gamma_0/\tau_d}$. При $\Gamma_0 \tau_d \gg 1$ (область высоких температур) актуальным является случай $\Gamma_0 \gg 1/\tau_d \gg \gamma$.

При амплитудах поля волны, больших критического значения, стационарный коэффициент нелинейного поглощения убывает обратно пропорционально интенсивности. В нестационарном случае при малых длительностях импульса наблюдается корневая зависимость от интенсивности, наблюдаемая в некоторых экспериментах. С приближением к стационару

2*

(ростом длительности импульса) зависимость $\alpha \sim F^{-1}$ сменяется зависимостью $\alpha \sim F^{-2}$.

То же самое можно сказать и про явление выжженной дыры. Если спектральная диффузия отсутствует, то его можно рассматривать на основе уравнений Блоха с двумя временами, продольной T₁ и поперечной T₂ релаксации, причем T₂=2T₁=2/γ. Из уравнений Блоха следовало бы однозначное соотношение между критической амплитудой и шириной выжженной дыры

$$\Delta Q = F_c \sqrt{1 + F^2/F_c^2}.$$

Форма дыры получается лоренцевой даже в том случае, если соотношение $T_{2} = 2T_{1}$ не выполняется.

Однако, как следует из расчета, форма выжженной дыры не является лоренцевой во всех рассмотренных случаях, когда важна спектральная диффузия. И что самое важное, ее ширина практически не зависит от интенсивности.

На наш взгляд, представляли бы больший интерес систематическое экспериментальное исследование явлений выжженной дыры и нелинейного резонансного поглощения (с одновременным контролем стационарности эффекта) и подробное сопоставление результатов опыта с численными данными, полученными в настоящей работе.

Авторы выражают сердечную благодарность Ю. М. Гальперину и В. Л. Гуревичу за полезное обсуждение результатов работы.

Список литературы

- [1] Amorphous Solids. Low Temperature Properties / Ed. W.A. Phillips. Berlin-Meidelberg-N. Y., 1981. [2] Гальперин Ю. М., Гуревич В. Л., Паршин Д. А. // Письма в ЖЭТФ. 1987. Т. 45.

- [2] Гальперин Ю. М., Гуревич В. Л., Паршин Д. А. // Письма в ЖЭТФ. 1987. Т. 45. № 2. С. 85-88.
 [3] Galperin Yu. M., Gurevich V. L., Parshin D. A. // Phys. Rev. B. 1988. V. 37. N 17. P. 10 339-10 349.
 [4] Гуревич В. Л., Разев Э. А. // ФТТ. 1987. Т. 29. № 1. С. 136-142.
 [5] Паршин Д. А., Рэзев Э. А. // ЖЭТФ. 1987. Т. 93. № 6. С. 2129-2150.
 [6] Klauder J. R., Anderson P. W. // Phys. Rev. 1962. V. 125. N 3. P. 912-932.
 [7] Joffrin J., Levelut A. // J. de Phys. 1975. V. 36. N 9. P. 811-822.
 [8] Hunklinger S., Arnold W. Physical Acoustics. V. 12/ Ed. W. P. Mason, R. N. Thuston. N. Y., 1976. P. 155-215.
 [9] Black J. L., Halperin B. I. // Phys. Rev. B. 1977. V. 16. N 6. P. 2879-2895.
 [10] Golding B., Graebner J. E. // См. [¹]. P. 207.
 [11] Laikhtman B. D. // Phys. Rev. B. 1985. V. 31. N 1. P. 490-504; 1986. V. 33. N 4. P. 2781-2795.
 [12] Паршин Д. А., Соловьев В. Н. // ФТТ. 1988. Т. 30. № 6. С. 1888-1891.
 [13] Гальперин Ю. М., Гуревич В. Л., Паршин Д. А. // ЖЭТФ. 1984. Т. 87. № 6. C. 2178-2192.

- C. 2178-2192.
- [14] Поттер Д. Вычислительные методы в физике. М.: Мир, 1975.
- [15] Golding B., Graebner J. E., Schutz R. J. // Phys. Rev. B. 1976. V. 14. N 4. P. 1660-1662.
- [16] Arnold W., Black J. L., Weiss G. // Phonon Scattering in Condensed Matter // Ed. H. J. Maris. N. Y.-London, 1980. P. 77.

Криворожский

государственный педагогический институт

Поступило в Редакцию 19 февраля 1990 г.