МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ УКРАЇНСЬКА ЕКОЛОГІЧНА АКАДЕМІЯ НАУК КРИВОРІЗЬКИЙ ДЕРЖАВНИЙ ПЕДАГОГІЧНИЙ ІНСТИТУТ УКРАЇНСЬКЕ БОТАНІЧНЕ ТОВАРИСТВО КРИВОРІЗЬКИЙ ЕКОЛОГІЧНИЙ ЦЕНТР

ОХОРОНА ДОВКІЛЛЯ:

ЕКОЛОГІЧНІ, ОСВІТЯНСЬКІ 'МЕДИЧНІ, АСПЕКТИ

Матеріали III Всеукраїнської конференції: 8-9 грудня 1998 року, м. Кривий Ріг

1 частина

ВЛИЯНИЕ ГИПОТЕРМИИ КАК ЭКОЛОГИЧЕСКОГО ФАКТОРА НА СОДЕРЖАНИЕ ФОСФОРА И АМИНОКИСЛОТ В СКЕЛЕТНЫХ МЫШЦАХ

Уланова А.Б.

Изучение при гипотермии содержания и обмена фосфорних соединении В мышцах показателя хода энергетических процессов в организме раскрыть более углубленное понимание метаболизма клеточном процессов на уровне влиянием неблагоприятных условий нашей среды, одним из которых является низкая температура.

Исследования проводились на белых крысах и овцах романовской породы. Исследовались скелетные мышцы разной внутренней структуры, которые были подвержены замораживанию, после чего в них определяли количество неорганического фосфора (НФ), креатинофосфата (КФ) и аденозинтрифостата (АТФ), а также аминокислот по унифицированным методикам.

Сравнение данных исследования контрольных и опытных групп животных показало (таблица 1), что в условиях глубокой гипотермии наблюдается увеличение содержания неорганического фосфора в мышцах разной внутренней структуры в среднем на 28-30%, в то время как увеличение креатинофосфата и аденозинтрифосфата менее выражено и составляет всего 17-20%. Таблица 1. (Изменение содержания кислоторастворимых фосфатов в скелетных мышцах разной внутренней структуры в условиях гипотермии)

АТФ	K.	23,5±0,2	23,8±0,3	22,6±0,4	23,1±0,2	22,4±0,1	
, 	експ.	28,3±0,2	27,0±0,2 28,4±0,3	30,8±0,2 27,5±0,1 27,9±0,4	28,0±0,3	28,5±0,2	
КФ	7.	26,7±0,3	27,0±0,2	27,5±0,1	26,2±0,4	25,9±,2	
X	Эксп.	32,2±0,2	31,9±0,3	30,8±0,2	31,4±0,3	32,7±0,5 32, 1±0,4	ento Ciri
Paring And Andrews (Andrews Andrews An		33,5±0,5	32,8±0,3	31,7±0,4	33,0±0,2		
ФН	Эксп. К.	43,7 ±0,2	42,4±0,3	43,0±0,2	45,8±0,3	43,7±0,3	
Мышцы		Дельто- видная	2.3убча- тая вет-	ральная 3.Пред-	остная 4.Подло-	паточная 5. Двуг-	лавая

Что касается содержания аминокислот в мышцах исследуемых животных, то следует подчеркнуть, что каждая из исследованных мышц характеризуется в целом уникальным соотношением аминокислот, которое зависит от их внутренней структуры и выполняемой функции.

Из таблицы 2(Распределение заменимых и незаменимых АК в скелетных мышцах разной внутренней структуры в норме и при замораживании) видно, что в дельтовидной мышце динамического типа повышенное содержание в основном незаменимых аминокислот, в то время как в мышцах статодинамического и статического типов это соотношение резко меняется в противоположную сторону.

В условиях гипотермии содержание аминокислот во всех исследованных мышцах повышается, хотя зависимость соотношения незаменимых и заменимых аминокислот от внутренней структуры мышцы сохраняется.

Из проведенных исследований можно сделать вывод, стадии глубокой гипотермии происходит ряда физиологических функций, которая декомпенсация понижением активности ферментов, сопровождается участие в расходе богатых принимающих фосфорных соединений, что и приводит к накоплению АК и лабильных фосфатов в мышцах на фоне резкого угнетения их обмена.

pen	
L	
-	
-	
-	
-	
med	
-	
P	
2	

OF MARSINGA

is the businessin

ышы	Контр.группа	руппа	Экспер.	Экспер. Группа
	Незам. Ак		зам.Ак Незам, АК	замен. АК
Дельговидная	50,46	46.03	51,58	49,42
Зубчатая ветральная	43,59	52,23	44,08	55,04
Предострая	39,75	56.99	40,15	57,16
Подлопаточная	39,00	55,87	42,14	58,45
Двуглавая	32,50	62,20	36,70	64,18

sameour in

si ka kamanamat ak