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Abstract 

The article supports the need for training techniques for neural network computer simulations 

in a spreadsheet context. Their use in simulating artificial neural networks is systematically 

reviewed. The authors distinguish between fundamental methods for addressing the issue 

of network computer simulation training in the spreadsheet environment, joint application 

of spreadsheets and tools for neural network simulation, application of third-party add-ins 

to spreadsheets, development of macros using embedded languages of spreadsheets, use 

of standard spreadsheet add-ins for non-linear optimization, creation of neural networks  

in the spreadsheet environment without add-ins, and On the article, methods for creating 

neural network models in Google Sheets, a cloud-based spreadsheet, are discussed. 

The classification of multidimensional data presented in R. A. Fisher's "The Use of Multiple 

Measurements in Taxonomic Problems" served as the model's primary inspiration. Discussed 

are various idiosyncrasies of data selection as well as Edgar Anderson's participation  

in the 1920s and 1930s data preparation and collection. The approach of multi-dimensional 

data display in the form of an ideograph, created by Anderson and regarded as one of the first 

effective methods of data visualization, is discussed here. 

Keywords: computer simulation; neural networks; spreadsheets; neural computing; early 

network models; Anderson's Iris; cloud-based learning tools. 

INTRODUCTION 

The Fourth Industrial Revolution (Industry 4.0) has become a system-related 

challenge for the scientific community (Schwab & Davis, 2018). Industry 4.0 is 

primarily characterized by evolution and convergence of nano-, bio-, 

information and cognitive technologies to enhance high quality 

transformations in economic, social, cultural and humanitarian spheres. 

Professionals dealing with development and introduction of the sixth techno-

logical paradigm technologies determine to a great extent whether our country 

is able to ride the wave of Industry 4.0 innovations. Therefore, extensive 

implementation of ICT is a top priority of Ukraine’s higher education updating 

in order to form a professionally competent specialist able to ensure 

the country’s innovative development. 

https://creativecommons.org/licenses/by/4.0/
https://portal.issn.org/resource/ISSN/2521-1234
https://doi.org/10.32919/uesit.2022.03.04
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According to the Decree of the Cabinet of Ministers of Ukraine “Certain 

issues of specifying medium-term priorities of the national-level innovative 

activity for 2017-2021” (2016), developing modern ICT and robotics, 

particularly cloud technologies, computer training systems and technologies 

of mathematical informatics (intellectual simulation, informational security, 

long-term data storage and “big data” management, artificial intelligence 

systems) are nationally and socially important directions of the innovative 

activity (Markova, Semerikov, & Popel, 2018; Markova et al., 2019). The Decree 

of the Cabinet of Ministers of Ukraine “Certain issues of specifying medium-

term priorities of the sectoral-level innovative activity for 2017-2021” (2017) 

specifies that these directions accompanied by smart web-technologies and 

cloud computing make the basis for creating and defining themes for scientific 

researches and technical (experimental) developments as well as for forming 

the state order of training ICT specialists. 

For the past 25 years, the authors have been developing the concept 

of systematic computer simulation training at schools and teachers’ training 

universities. The concept ideas have been generalized and presented  

in the textbook (Teplytskyi, 2010). Spreadsheets are chosen to be the leading 

environment for computer simulation training, their application discussed 

in articles (Semerikov, Teplytskyi, Yechkalo, & Kiv, 2018). Using spreadsheet 

processors (autonomous, integrated and cloud-based) as examples, the authors 

demonstrate components of teaching technology of computer simulation 

of determined and stochastic objects and processes of various nature. 

The systematic training of simulation provides for changing and integrating 

simulation environments ranging from general (spreadsheets) to specialized 

subject-based ones. While teaching computer simulation of intellectual 

systems specialized languages and programming environments are 

traditionally used. They can be easily mastered by first-year students (Abelson, 

Sussman, G. J., & Sussman, J., 1996). One of the most wide-spread languages, 

Scheme, is offered to be applied to teaching computer simulation of classical 

mechanics at universities (Sussman & Wisdom, 2015). Extensive application 

of artificial intelligence in everyday life calls for students’ early acquaintance 

with its models and methods including neural network-based while teaching 

informatics at secondary schools (Semerikov & Teplytskyi, 2018). It conditions 

the need for developing training methods of computer simulation of neural 

networks in the general-purpose simulation environment, i.e. spreadsheets. 

LITERATURE REVIEW AND PROBLEM STATEMENT 

The first description of spreadsheet application to teaching neural network 

simulation of visual phenomena dates back to 1985 and belongs to 

Thomas T. Hewett, Professor of the Department of Psychology of Drexel 

University (Hewett, 1985b). In (Hewett, 1985a) there are described simple 

models of microelectrode recording of two neuron types of neural activity – 
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receptors and transmitters localized in two brain-hemispheres. 

Thomas T. Hewett offered psychology students to independently choose 

coefficients of intensifying or reducing input impulses to achieve the desired 

output: “... the simulations can be designed in such a way that the student is 

able to "experiment" with a simulation-experiment both in the sense 

of discovering the characteristics of an unknown model and in the sense 

of modifying various components of a known model to see how the simulation 

is affected” (Hewett, 1985a, p. 343). This approach implies simultaneous 

studying a neural network and understanding its functioning as psychology 

students conclude the laws of the neural impulse spread by applying the trial-

and-error method. 

In his article (1990), James J. Buergermeister, Professor of Hospitality and 

Tourism Management of University Wisconsin-Stout, associates electronic 

spreadsheet application with basic principles of training technology and 

methods of data processing (Fig. 1). The author does not work out the methods 

of applying electronic spread-sheets to neural network simulation in detail, 

yet, the presented scheme reveals such basic steps as data obtainment, 

semantic coding, matching with an etalon, etc. 

Since 1988, Murray A. Ruggiero, one of the pioneers of autotrading, has been 

developing Braincel, an application for Microsoft Excel 2.1C, which is a set 

of twenty macros to solve tasks of image recognition by artificial neural 

network tools (Johnston, 1991). At the beginning of 1991, Murray A. Ruggiero 

received a patent “Embedding neural networks into spreadsheet applications” 

(Ruggiero, 1993), which describes an artificial neural net-work with a plurality 

of processing elements called neurons arranged in layers. They further include 

interconnections between the units of successive layers. A network has 

an input layer, an output layer, and one or more “hidden” layers in between, 

necessary to allow solutions of non-linear problems. Each unit (in some ways 

analogous to a biological neuron: dendrites – input layer, axon – output layer, 

synapses – weights (Rienzo & Athappilly, 2012), soma – summation function) 

is capable of generating an output signal which is determined by the weighted 

sum of input signals it receives and an activation function specific to that unit. 

A unit is provided with inputs, either from outside the network or from other 

units, and uses these to compute a linear or non-linear output. The unit’s 

output goes either to other units in subsequent layers or to outside 

the network. The input signals to each unit are weighted by factors derived  

in a learning process. 

When the weight and activation function factors have been set to correct 

levels, a complex stimulus pattern at the input layer successively propagates 

between the hid-den layers, to result in a simpler output pattern. The network 

is “taught” by feeding it a succession of input patterns and corresponding 

expected output patterns. The net-work “learns” by measuring the difference 

at each output unit between the expected output pattern and the pattern that it 

just produced. Having done this, the internal weights and activation functions 

are modified by a learning algorithm to provide an output pattern which most 
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closely approximates the expected output pattern, while minimizing the error 

over the spectrum of input patterns. Neural network learning is an iterative 

process involving multiple lessons. Neural networks have the ability to process 

information in the presence of noisy or incomplete data and yet still generalize 

to the correct solution. 

 

 
Figure 1. The information-processing model using spreadsheet events (according 

to (Buergermeister, 1990) 

 

In his patent, Murray A. Ruggiero details a network structure (multi-level), 

an activation function (sigmoidal), a coding method (polar), etc. He presents 

a mathematical apparatus for network training and determines a method 

of data exchange between a spreadsheet processor nucleus and an add-in to it. 

The patent author suggests storing input data in columns, maximum and 
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minimum values for each column of input data, the number of learning 

patterns. Data can be normalized or reduced to the polar range [0; 1] both 

in spreadsheets and add-ins. 

In his article of (1989), Paul J. Werbos, the pioneer of the backpropagation 

method for artificial neural network training demonstrates how to make 

the corresponding mathematical apparatus simpler to use it directly in 

the spreadsheet processor. The cycling character of training is supported by 

a macro that exchanges data between lines to avoid restrictions on the number 

of iterations because of the limited number of lines on a sheet of a separate 

spreadsheet. Some other authors suggest applying a similar approach of macros 

application (Freedman, Frail, Schneider, & Schnitta, 1991; Zaremba, 1990). 

The authors of (Kendrick, Mercado, & Amman, 2006) in Chapter 2 “Neural 

Nets in Excel” give an example of applying the non-linear optimization tool, 

Microsoft Excel Solver, to forecasting stock prices using the “grey-box” 

concept, in which the model is evident, yet, the details of its realization are 

hidden. 

In their article of (1998), Tarek Hegazy and Amr Ayed from the Department 

of Civil Engineering at University of Waterloo distinguish the corresponding 

steps. Unlike (Ruggiero, 1997), the authors suggest using bipolar data 

normalization (over the range of [–1; 1]) and a hyperbolic tangent as 

an activation function. Three add-ins for Microsoft Excel are used to determine 

weighting factors – the standard Solver and third-party add-ins (NeuroShell2 

and GeneHunter by Ward Systems Group). Experiment results reveal that 

the best result is provided by the optimizing general-purpose tool (Solver) and 

not by specialized ones. In spite of the fact that “Journal of Construction 

Engineering and Management” does not refer to educational editions, 

the article (Hegazy & Ayed, 1998) and the paper (Ayed, 1997) by their structure 

and focus on details can be considered the first description of methodic 

of using spreadsheets for neural network simulation. 

In their article of (2012), Thomas F. Rienzo and Kuriakose K. Athappilly from 

Haworth College of Business at Western Michigan University consider model 

illustrating the process of machine learning as networks examine training data 

would provide another. Authors incorporate the stepwise learning processes 

of artificial neural network in a spreadsheet containing (1) a list or table 

of training data for binary input combinations, (2) rules for target outputs, 

(3) initial weight factors, (4) threshold values, (5) differences between target 

outputs and neural network transformation values, (6) learning rate factors, 

and (7) weight adjustment calculations. Unlike the previous ones, this model is 

invariant to the spreadsheet and does not call for applying any third-party  

add-ins. 

In (Markova, Semerikov, & Popel, 2018) the role of neural network 

simulation in the training content of the special course “Foundations 

of Mathematical Informatics” is discussed. The course is developed for students 

of technical universities (future IT-specialists) and aimed at breaing a gap 

between theoretic computer science and its practical application to software, 



 

47 

Ukr. J. of Educ. 

Stud. and Inf. 

Technol. 

2022, 10(3) 

system and computing engineering. CoCalc is justified as a training tool 

for mathematical informatics in general and neural network modelling 

in particular. The elements of CoCalc techniques for studying the topic “Neural 

network and pattern recognition” within the special course “Foundations 

of Mathematical Informatics” are shown. 

The authors of (Semerikov, Teplytskyi, Yechkalo, & Kiv, 2018) distinguish 

basic approaches to solving the problem of network computer simulation 

training in the spreadsheet environment, joint application of spreadsheets and 

tools of neural network simulation. In (Semerikov & Teplytskyi, 2018), there 

are opportunities for applying spreadsheets to introducing essentials 

of machine learning (Mitchell, 2017) at secondary and higher school as well as 

some elements of their application to solving problems of pattern 

classification. Thus, using spreadsheets as a tool for teaching basics of machine 

learning creates conditions for early and simultaneously deeper mastering 

of corresponding models and methods of mathematical informatics 

(Abraham, 2002). 

The conducted review makes it possible to find the following solutions  

of the problem of computer simulation teaching to neural networks  

in the spreadsheet environment: 

- joint application of spreadsheets and neural network tools (Permiakova & 

Semerikov, 2008), in which data is exported to the unit calculating weighting 

factors imported to spreadsheets and used in calculations; 

- application of third-party add-ins for spreadsheets (Hegazy & Ayed, 1998; 

Johnston, 1991; Ruggiero, 1993), according to which structured spreadsheet 

data is processed in the add-in, calculation results are arranged in spreadsheet 

cells; 

- macros development (Ayed, 1997; Freedman, Frail, Schneider, & Schnitta, 

1991; Werbos, 1989; Zaremba, 1990) enables direct software control over 

neural network training and creation of a user’s specialized interface; 

- application of standard add-ins for optimization (Hegazy & Ayed, 1998; 

Kendrick, Mercado, & Amman, 2006) calls for transparent network realization 

and determination of an optimization criterion (minimization of a squared 

deviation total of the calculated and etalon outputs of the network); 

- creation of neural networks in the spreadsheet environment without add-

ins and macros (Rienzo & Athappilly, 2012) requires transparent realization 

of a neural network with evident de-termination of each step of adjustment 

of its weighting factors. 

The advantage of the first solution is its flexibility as one can choose any 

relevant combinations of the simulation environments, yet, their integration 

level is usually insufficient. The closed character of the second solution and its 

binding to a certain software platform make it relevant to be applied to solving 

various practical tasks and irrelevant for neural network simulation training as 

a network becomes a black box for a user. The fourth solution is partially 

platform-dependent as a neural network becomes a grey box for a user. 

The final solution is totally mobile and offers an opportunity to regard 
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the model as a white box, thus making it the most relevant for initial mastering 

of neural network simulation methods. 

THE AIM AND OBJECTIVES OF THE STUDY 

The research is aimed at considering mathematical models of neural 

networks realized in spreadsheet environment. To accomplish the set goal, 

the following tasks are to be solved: (1) to study historical models of neural 

networks; (2) to distinguish learning tools of computer simulation of neural 

networks in the spreadsheet environment; (3) to substantiate the chosen 

dataset to develop a model; (4) to develop a demonstration model  

of an artificial neural network using cloud-based spreadsheets. 

EARLY NEURAL NETWORKS MODELS: FROM WILLIAM JAMES TO 

WALTER PITTS 

Russell C. Eberhart and Roy W. Dobbins (1990) suggest dividing the history 

of artificial network development into four stages. The first stage, the Age 

of Camelot, starts with “The Principles of Psychology” (1890) by the American 

psychologist, William James, who formulates the elementary law 

of association: “When two elementary brain processes have been active 

together or in immediate succession, one of them, on reoccurring, tends 

to propagate its excitement into the other” (James, 1890, p. 566). 

The elementary law of association (the elementary principle) is closely related 

to the concepts of associative memory and correlational learning.  

In the authors’ opinion (Eberhart & Dobbins, 1990), James seemed to foretell 

the notion of a neuron’s activity being a function of the sum of its inputs, with 

past correlation history contributing to the weight of interconnections: 

“The amount of activity at any given point in the brain-cortex is the sum  

of the tendencies of all other points to discharge into it, such tendencies being 

proportionate (1) to the number of times the excitement of each other point 

may have accompanied that of the point in question; (2) to the intensity of 

such excitements; and (3) to the absence of any rival point functionally 

disconnected with the first point, into which the discharges might be diverted” 

(James, 1890, p. 567). 

In “Psychology” (1892), an abridged re-edition of “The Principles 

of Psychology”, James formulates basic principles of the image recognition 

theory: “We know, in short, a lot about it, whilst as yet we have no 

acquaintance with it. Our perception that one of the objects which turn up is, 

at last, our qucesitum, is due to our recognition that its relations are identical 

with those we had in mind, and this may be a rather slow act of judgment. 

Every one knows that an object may be for some time present to his mind 

before its relations to other matters are perceived. Just so the relations may be 

there before the object is.” (James, 1892, p. 275). 
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“The Bulletin of Mathematical Biophysics” has been an advanced platform 

for approbating network models and methods since the moment of its 

foundation by Nicolas Rashevsky (Cull, 2007). It should be no surprise as 

Rashevsky invented one of the first models of the neuron (1933) and started 

the idea of artificial neural networks. The basic idea was to use a pair of linear 

differential equations and a nonlinear threshold operator: 

          

{
  

  
         |  

where θ is the threshold, e and j could represent excitation and inhibition or 

the amount or concentration of two substances within a neuron, H(x) is 

the Heaviside operator (takes positive values to 1, and non-positive values 

to 0). This gives an easy way to model the all-or-none firing of a neuron – 

Rashevsky showed that this simple model was able to model many of 

the known experimental results for the behavior of single neurons. He also 

made the point that networks of these model neurons could be connected 

to give quite complicated behavior and even serve as a model for a brain 

(Cull, 2007).  

In his article of (1941), Gale J. Young shows that the Rashevsky’s two-factor 

model of nerve excitation can account for sustained inhibition or enhancement 

by a sequence of stimulus pulses, and for the decrease in the reinforcement 

period with each successive pulse of the train. 

Developing Rashevsky’s ideas, his student Alston Scott Householder, who 

gave his name to the known linear transformation describing a reflection about 

a plane or hyperplane containing the origin, and a class of root-finding 

algorithms used for functions of one real variable with continuous derivatives 

up to some order, in his article of 1940 (Householder, 1940), suggests 

a parameter measuring the “strength” of the inhibitory neurons acting among 

the terminal synapses. In (Householder, 1941), he describes the activity 

parameter as a characteristic of the fiber which is assumed to be different 

from zero, but it may be either positive (when the fiber is excitatory 

in character) or negative (when the fiber is inhibitory in character). 

Thus, at the beginning of 1942, the theory of biological neural networks 

based on Rashevsky’s continuous two-factor model was created and intensively 

developed. As remembered by J. A. Anderson and E. Rosenfeld, at the boundary 

of two decades, Walter Pitts was introduced to Nicolas Rashevsky by Rudolf 

Carnap, and accepted in to his mathematical biology group (Cowan, 1998). 

In his early publication, Pitts suggests “a new point of view in the theory of 

neuron networks is here adumbrated in its relation to the simple circuit: it is 

shown how these methods enable us to extend considerably and unify previous 

results for this case in a much simpler way” (Pitts, 1942a, p. 121). With due 

consideration of Householder’s articles, Pitts determines the total conduction 

time of a fiber as the sum of its conduction time and the synaptic delay  
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at the postliminary synapse. Pitts was the first to use spreadsheet abstraction 

and discrete description of neural network functioning by determining 

a corresponding algorithm: Pitts was the first to use spreadsheet abstraction 

and discrete description of neural network functioning by determining 

a corresponding algorithm: “The excitation-pattern of [neural circuit] C may be 

described in a matrix E, of n rows and an infinite number of columns, each 

of whose elements ers represents the excitation at the synapse sr during 

the interval (s, s+1). The successive entries in the excitation matrix E may be 

computed recursively from those in its first column – these are the quantities λr 

– by the following rule, whose validity is evident: Given the elements  

of the p-th column, compute those of the p+l-st thus: if the element eip is 

negative or zero, place σi+l in the i+l-st row and p+1-st column, or in the first 

row of the p+l-st column if i=n. Otherwise put σi+l+aieip, in this place. We shall 

say that C is in a steady-state during a series of n intervals (s, s+1), ..., (s+n–1, 

s+n) if, for every p between s and s+n, the p-th and p+n-th columns of E are 

identical. If s is the smallest integer for which this is the case, we shall say that 

the steady state begins at the interval (s, s+1)” (Pitts, 1942a, pp. 121–122). 

The suggested algorithm describes a parallel neural network 

(Pitts, 1942a, pp. 122). Rather than analyzing the steady-state activity 

of networks, Pitts was more concerned with initial nonequilibrium cases, and 

how a steady state could be achieved (Abraham, 2002, p. 18). 

The results provided by Pitts in his articles on the linear theory of neuron 

networks (the static problem (Pitts, 1942b) and the dynamic problem 

(Pitts, 1943c)), enabled him to draw two essential conclusions: (1) it is possible 

to find a set of independent networks each of which consists of n simple 

circuits with one common synapse (rosettes), such that network arises 

by running chains from the centers of the rosettes to various designated points 

outside: but none back, so that the state of the whole network is determined 

by the states of the separate rosettes independently – Pitts calls networks 

of this kind canonical networks (Pitts, 1943c, p. 29); (2) given any finite network, 

it is possible to find a set of independent rosettes such that the excitation 

function of network for every region is a linear combination of those  

of the rosettes – i. e., we can reduce any network to a canonical network having 

the same excitation function (Pitts, 1943c, p. 31). Thus, in his article of 1943, 

Pitts solves the inverse network problem, “which is, given a preassigned 

pattern of activity over time, to construct when possible a neuron-network 

having this pattern” (Pitts, 1943c, p. 23) by allowing creating problem-oriented 

neural networks. Tara H. Abraham indicates that adopting Householder’s 

model of neural excitation, Pitts develops a simpler procedure  

for the mathematical analysis of excitatory and inhibitory activity in a simple 

neuron circuit, and aimed to develop a model applicable to the most general 

neural network possible (Abraham, 2002). 

“Psychometrika”, the official journal of the Psychometric Society (both 

founded in 1935 by Louis Leon Thurstone, Edward Lee Thorndike and Joy Paul 

Guilford), is devoted to the development of psychology as a quantitative 
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rational science. It has become another mouthpiece of Nicolas Rashevsky and 

his students, whose articles examine statistical methods, discuss mathematical 

techniques, and advance theory for evaluating behavioral data in psychology, 

education, and the social and behavioral sciences generally. Pitts’s article 

“A general theory of learning and conditioning” has been published in this 

journal. Part I (Pitts, 1943a) deals only with the case where the stimuli and 

responses are wholly independent, so that transfer and generalization do not 

occur, and proposes a law of variation for the reaction-tendency, which takes 

into ac-count all of classical conditioning and the various sorts of inhibition 

affecting it. Part II (Pitts, 1943b) extends a mathematical theory  

of non-symbolic learning and conditioning, still under the hypothesis 

of complete independence, to cases where reward and punishment are involved 

as motivating factors. The preceding results are generalized to the case where 

stimuli and responses are related psychophysically, thus constituting a theory 

of transfer, generalization, and discrimination. 

Another article of 1943, “A logical calculus of the ideas immanent in nervous 

activity” (McCulloch & Pitts, 1943), published again in “Bulletin 

of Mathematical Biophysics”, has resulted from cooperation of Warren Sturgis 

McCulloch and Walter Pitts and is considered one of the most famous papers 

on artificial neural networks. They stated five physical assumptions for nets 

without circles (McCulloch & Pitts, 1943, p. 118): 

1. The activity of the neuron is an “all-or-none” process [any nerve has 

a finite threshold and the intensity of excitation must exceed this for 

production of excitation – once produced, the excitation proceeds 

independently of the intensity of the stimulus]. 

2. A certain fixed number of synapses must be excited within the period 

of latent addition [time during which the neuron is able to detect the values 

present on its in-puts, the synapses – typically less than 0.25 msec] in order 

to excite a neuron at any time, and this number is independent of previous 

activity and position on the neuron. 

3. The only significant delay within the nervous system is synaptic delay 

[time delay between sensing inputs and acting on them by transmitting 

an outgoing pulse, – typically less than 0.5 msec]. 

4. The activity of any inhibitory synapse absolutely prevents excitation 

of the neuron at that time. 

5. The structure of the net does not change with time. 

The neuron described by these five assumptions is known as the McCulloch-

Pitts neuron (Eberhart & Dobbins, 1990, p. 17). In the same way as propositions 

in propositional logic can be “true” or “false,” neurons can be “on” or “off” – 

they either fire or they do not: this formal equivalence allowed them to argue 

that the relations among propositions can correspond to the relations among 

neurons, and that neuronal activity can be represented as a proposition 

(Markova, Semerikov, Striuk, Shalatska, Nechypurenko, & Tron, 2019, p. 19). 

In (McCulloch & Pitts, 1943), there is a set of theorems that “does in fact 

provide a very convenient and workable procedure for constructing nervous 
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nets to order, for those cases where there is no reference to events indefinitely 

far in the past in the specification of the conditions” (McCulloch & Pitts, 

1943, pp. 121–122). McCulloch and Pitts appear to be the first authors since 

William James to describe a massively parallel neural model. The theories they 

developed were important for a number of reasons, including the fact that any 

finite logical expression can be realized by networks of their neurons. 

Combining simple “logical” neurons in chains and cycles, the authors show 

that the brain is able to perform any logical operation and arbitrary logical 

calculations. The paper is essential for developing computing machines as it 

allows creating a universal computer operating with logical expressions  

(in the hands of John von Neumann, the McCulloch-Pitts model becomes 

the basis for the logical design of digital computers (Cull, 2007, p. 180)): “It is 

easily shown: first, that every net, if furnished with a tape, scanners connected 

to afferents, and suitable efferents to perform the necessary motor-operations, 

can compute only such numbers as can a Turing machine; second, that each 

of the latter numbers can be computed by such a net; and that nets with circles 

can be computed by such a net; and that nets with circles can compute, without 

scanners and a tape, some of the numbers the machine can, but no others, and 

not all of them. This is of interest as affording a psychological justification 

of the Turing definition of computability and its equivalents, Church’s  

λ-definability and Kleene’s primitive recursiveness: If any number can be 

computed by an organism, it is computable by these definitions, and 

conversely.” (McCulloch & Pitts, 1943, pp. 121–122). 

In the same issue of “Bulletin of Mathematical Biophysics”, in which 

(McCulloch & Pitts, 1943) was published, Herbert Daniel Landahl (the first 

doctoral student in Rashevsky’s mathematical biology program  

at the University of Chicago, who became the second President of the Society 

for Mathematical Biology in 1981), Warren Sturgis McCulloch and Walter Pitts 

published a short (about 3 pages), yet essential addition (Landahl, McCulloch, 

& Pitts, 1943), suggesting a method for converting logical relations among 

the actions of neurons in a net into statistical relations among the frequencies 

of their impulses. In the presented theorem, they detailed transition 

from Boolean calculations (in “true” and “false”) to probabilistic ones 

(numbers within [0; 1]): the conjunction sign ˅ is replaced by +, the disjunction 

sign (single dot) is replaced by ×, negation ~ is replaced by «1 –», etc. 

The correspondence expressed by this theorem connects the logical calculus 

of the (McCulloch & Pitts, 1943) with previous treatments of the activity 

of nervous nets in mathematical biophysics and with quantitatively measurable 

psychological phenomena. 

The monograph by Householder and Landahl “Mathematical Biophysics 

of the Central Nervous System” has become a kind of conclusion  

of the discussed period (Householder & Landahl, 1945). In Paul Cull’s opinion, 

there is no unambiguous answer to the question which model is better, 

the Rashevsky continuous model or the McCulloch-Pitts discrete model: 

“For some purposes, one model is better, but for other purposes, the other 
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model is better. Rashevsky and Landahl were quick to notice, that in physics, 

one often averaged over a large set of discrete events to obtain a continuous 

model which represented the large scale behavior of a system, and so they 

posited that the continuous neuron model might be suitable for modeling 

whole masses of neurons even if each individual neuron obeyed a discrete 

model. In the hands of Householder and Landahl, this observation led  

to the idea of modeling psychological phenomena by neural nets with a small 

number of continuous model neurons. In particular, they found that the cross-

couple connection (Fig. 2) was extremely useful. For such problems as reaction 

time, enhancement effects, flicker phenomena, apparent motion, 

discrimination and recognition, they were able to fit these models 

to experimental data and to use their models to predict phenomena that could 

be measured and verified” (Cull, 2007, p. 180). 

 

 
Figure 2. This cross-couple connection of four neurons is capable of modeling a 

large number of phenomena (according to (Schwab & Davis, 2018)) 

 

In 1945, Rashevsky wrote about (McCulloch & Pitts, 1943) and (Landahl, 

McCulloch, & Pitts, 1943): “authors show that by applying logical calculus, it is 

possible to construct any complicated network having given properties. 

One could attempt to construct by the method of McCulloch and Pitts 

a network that would represent all modes of logical reasoning, and then apply 

the usual methods of mathematical biophysics to derive some quantitative 

relations between different manifestations of the processes of logical thinking” 

(Rashevsky, 1945a, p. 146). “It seems somewhat awkward to have to construct 

by means of Boolean algebra first a "microscopic circuit" and then obtain 

a simpler one by a transition to the "macroscopic" picture. We should expect 

that a generalization of the application of Boolean algebra should be possible 

so as to permit its use for the construction of networks in which time relations 

are of a continuous rather than of a quantized, nature” (Rashevsky, 1945b, 

p. 211). 

Rashevsky intensively develops the apparatus created by McCulloch and 

Pitts in his further papers. In (Rashevsky, 1946) a theory of such neural circuits 

is developed which provide for formal logical thinking. Predicate apparatus 

application enables Rashevsky synthesizing huge neural networks from single-

type fundamental elements of McCulloch-Pitts. 

Telson Wei develops another approach to matrix representation of a neural 

net-work (Wei, 1948). The structure of a complete or incomplete neural net is 

represented here by several matrices: the intensity matrix E, the connection 



 

54 

Ukr. J. of Educ. 

Stud. and Inf. 

Technol. 

2022, 10(3) 

matrix D, the structural matrix T, the diagonal inverse threshold-matrix H, and 

activity vector a from (Landahl & Runge, 1946; Landahl, 1947). 

In their paper (1948), Alfonso Shimbel and Anatol Rapoport (pioneered 

in the modeling of parasitism and symbiosis, researching cybernetic theory) 

develop a probabilistic approach to the theory of neural nets: neural nets are 

characterized by certain parameters which give the probability distributions 

of different kinds of synaptic connections throughout the net. In their further 

papers, they consider steady states in random nets and contribution  

to the probabilistic theory of neural nets: randomization of refractory periods 

and of stimulus intervals, facilitation and threshold phenomena, specific 

inhibition and various models for inhibition. 

The last joint article by Pitts and McCulloch, “How we know universals 

the perception of auditory and visual forms”, in “Bulletin of Mathematical 

Biophysics” came out in 1947. “Numerous nets, embodied in special nervous 

structures, serve to classify information according to useful common 

characters. In vision they detect the equivalence of apparitions related 

by similarity and congruence, like those of a single physical thing seen 

from various places. In audition, they recognize timbre and chord, regardless 

of pitch. The equivalent apparitions in all cases share a common figure and 

define a group of transformations that take the equivalents into one another 

but pre-serve the figure invariant. So, for example, the group of translations 

removes a square appearing at one place to other places; but the figure  

of a square it leaves invariant. ... We seek general methods for designing 

nervous nets which recognize figures in such a way as to produce the same 

output for every input belonging to the figure. We endeavour particularly 

to find those which fit the histology and physiology of the actual structure.” 

(Pitts & McCulloch, 1947, pp. 127–128). 

Thus, the models and methods developed by Pitts and McCulloch have 

created a foundation for designing a new type of computers – neurocomputers 

based on human brain principles and able to solve tasks of recognizing 

distorted (noisy) images. 

EDGAR ANDERSON AND HIS IRIS DATA SET 

Edgar Shannon Anderson (November 9, 1897 – June 18, 1969) was born 

in Forestville, New York. According to George Ledyard Stebbins, from an early 

age he exhibited both superior intelligence and a great interest in plants, 

particularly in cultivating them and watching them grow (Stebbins, 1978, p. 4). 

He went to Michigan Agricultural College at the age of sixteen, just before 

his seventeenth birthday, knowing already that he wanted to be a botanist. 

After completing his degree, he accepted a graduate position at the Bussey 

Institution of Harvard University. After leaving Harvard with his doctor’s 

degree in 1922, Anderson spent nine years at the Missouri Botanical Garden, 

where he was a geneticist and Director of the Henry Shaw School of Gardening; 
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at the same time he was Assistant Professor, later Associate Professor, 

of Botany at Washington University in St. Louis. During this period, 

he developed the beginnings of his highly original and effective methods 

for looking at and recording variation in plant populations, as well as his keen 

interest in the needs and progress, both scientific and personal, of students 

in botany. His training in genetics had given him habits of precision and 

mathematical accuracy in observing and recording variation in natural 

populations that were entirely foreign to the taxonomists of that period 

(Stebbins, 1978, p. 5). 

Through contacts with Jesse Greenman, Curator of the Garden Herbarium, 

he became aware of the enormous complexity and extent of the variation 

present in any large plant genus and of the need for understanding the origin 

of species as a major step in evolution. On extensive field trips he began 

to realize that a great amount of genetic variation exists within most natural 

populations of plants. This realization led him to the conclusion that “if we are 

to learn anything about the ultimate nature of species we must reduce 

the problem to the simplest terms and study a few easily recognized, well 

differentiated species” (Anderson, 1928, p. 243). 

He first selected Iris versicolor, the common blue flag, because he believed 

it to be clearly defined, and it was common and easily observed. Initially, this 

appeared to be a mistaken choice, since he soon found that Iris versicolor  

of the taxonomic manuals was actually two species, which, after preliminary 

analysis, he could easily tell apart. He then set himself the task of finding out, 

by a careful analysis of populations throughout their geographic areas, how one 

of these species could have evolved from the other. He recorded several 

morphological characters in more than 2,000 individuals belonging to 

100 populations, data far more extensive than those that any botanist had yet 

obtained on a single species. 

In order to enable these data to be easily visualized and compared, 

he constructed the first of his highly original and extremely useful series 

of simplified diagrams or ideographs (Fig. 3). By examining them, he reached 

the conclusion that the variation within each of his two species was of another 

order from the differences between them; no population of one species could 

be imagined as the beginning of a course of evolution toward the other. 

He therefore concluded that speciation in this example was not a continuation 

of the variation that gave rise to differences between populations of one 

species, and started to look for other ways in which it could have taken place. 

The current literature offered a possible explanation: hybridization followed by 

chromosome doubling to produce a fertile, stable, true-breeding amphidiploid. 

To apply this concept to Iris, he had to find a third species that would provide 

an alternate parent for one of those studied. Going to the herbarium, he found 

it: an undescribed variety of Iris setosa, native to Alaska. 

All of his data, including counts of chromosome numbers, agreed with 

the hypothesis that Iris versicolor of northeastern North America had arisen as 

an amphiploid, one parent being Iris virginica of the Mississippi Valley and 
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the Southeast Coast and the other being Iris setosa var. interior of the Yukon 

Valley, Alaska. This was one of the earliest demonstrations that a plant species 

can evolve by hybridization accompanied or followed by chromosome doubling. 

Moreover, it was the first one to show that amphiploid or allopolyploid species 

could be used to support hypotheses about previous distribution of species. 

 

 
Figure 3. Anderson’s pictorialized scatter diagram (Anderson, 1952, p. 97) 

 

Anderson’s research into Iris resulted in all the techniques in his later 

successful work, namely: 

1. careful examination of individual characteristics of plants growing 

in nature and progeny raised in the garden; 

2. reduction of this variation to easily visualized, simple terms by means 

of scatter diagrams and ideographs; 

3. extrapolation from a putative parental species and supposed hybrids 

to reconstruct the alternative parent; 

4. development of testable hypotheses by synthesizing data from every 

possible source. 

The Iris research was Anderson’s chief accomplishment during his first 

period at the Missouri Botanical Garden. Toward the end of this period, 

in 1929-1930, he received a National Research Fellowship to study in England. 

There he was guided chiefly by geneticist J. B. S. Haldane, but he also studied 

cytology under C. D. Darlington and statistics with R. A. Fisher. Haldane 

introduced him to the mutants of Primula sinensis, which he analyzed 

in collaboration with Dorothea De Winton. Their joint research was the first 

effort in plant material to relate pleiotropic gene action to growth processes. 

In 1931 Anderson went to Harvard, where he stayed until 1935, as an arborist 

at the Arnold Arboretum. He returned to the Missouri Botanical Garden in 1935 

and remained there for the rest of his life. Returning to his study of the genus 
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Iris, he and several students analyzed a complex variation pattern 

of populations found in the Mississippi delta region (Anderson, 1935). 

Anderson integrated his new experience with past memories, popular 

accounts of his methods of research, and his general philosophy of life  

in the book “Plants, Man and Life” (Anderson, 1952) published in 1952. It is 

a combination of scientific knowledge, folklore of Latin American and other 

countries, and Anderson’s comments on early herbalists and the habits 

of taxonomists and botany professors, plus a bit of philosophy. One of his chief 

contributions to plant science, the pictorialized scatter diagram, is presented 

for the first time in its final form in a chapter entitled, characteristically, 

“How to Measure an Avocado” (Fig. 3). 

Anderson’s article of 1936 (Anderson, 1936) was his last work dedicated 

to the problem of Iris origin and classification. In his introduction to the article, 

Anderson not only expressed his gratitude to his English teachers, but also 

directly indicated that “Dr. Wright, Prof. J. B. S. Haldane, and Dr. R. A. Fisher 

have greatly furthered the final analysis of the data, though they are in no way 

responsible for the imperfections of the work or of its presentation.” 

(Anderson, 1936, p. 458). 

In 1936, Sir Ronald Aylmer Fisher published the article “The Use of Multiple 

Measurements in Taxonomic Problems” indicating that “Table I shows 

measurements of the flowers of fifty plants each of the two species Iris setosa 

and I. versicolor, found growing together in the same colony and measured 

by Dr E. Anderson, to whom I am indebted for the use of the data” 

(Fisher, 1936, p. 179-180). Fisher’s article contained only three references two 

of which to Anderson’s works – that of 1935 (Anderson, 1935) and that 

of (Anderson, 1936) marked with “(in the Press)”. In 1936, Fisher was not 

the member of the editorial board of “Annals of the Missouri Botanical 

Garden”. The only way of his being aware of Anderson’s article 

(Anderson, 1936), was their personal correspondence. 

The set of data used by Fisher and collected by Anderson was introduced as 

“Iris flower data set” (or “Iris data set” and “Iris data”). The phrase “Fisher’s 

Iris data set” traditionally expresses Fisher’s role as the founder of linear 

discriminant analysis, but not the authorship of the data set. 

Although Anderson never published these data, he described 

(Anderson, 1935) how he collected information on irises: “For some years 

I have been studying variation in irises but never before have I had the good 

fortune to meet such quantities of material for observation. On the simple 

assumption that if current theories are true, one should be able to find 

evidence of continuing evolution in any group of plants, I have been going 

around the world looking as sharply as possible at variation in irises. On any 

theory of evolution the differences between individuals get somehow built up, 

in time, into the differences between species. That is to say that by one process 

or another the differences which exist between one plant of Iris versicolor and 

its neighbor are com-pounded into the greater difference which distinguishes 

Iris versicolor from Iris setosa canadensis. It is a convenient theory and if it is 
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true, we should be able to find the beginnings of such a compounding going on 

in our present day species. For that reason I have studied such irises as I could 

get to see, in as great detail as possible, measuring iris standard after iris 

standard and iris fall after iris fall, sitting squat-legged with record book and 

ruler in mountain meadows, in cypress swamps, on lake beaches, and in English 

parks. The result is still merely a ten year’s harvest of dry statistics, only 

partially winnowed and just beginning to shape itself into generalizations 

which permit of summarization and the building of a few new theories to test 

by other means. 

I have found no other opportunity quite like the field from De Verte to Trois 

Pistoles. There for mile after mile one could gather irises at will and assemble 

for comparison one hundred full-blown flowers of Iris versicolor and of Iris 

setosa canadensis, each from a different plant, but all from the same pasture, 

and picked on the same day and measured at the same time by the same person 

with the same apparatus. The result is, to ordinary eyes, a few pages 

of singularly dry statistics, but to the bio-mathematician a juicy morsel quite 

worth looking ten years to find. 

After which rhapsody on the beauty of variation it must immediately 

be emphasized that Iris setosa canadensis varies but little in comparison 

with our other native blue flags. Iris versicolor in any New England pastures may 

produce ground colors all the way from mauve to blue and with hafts white 

or greenish or even sometimes quite a bright yellow at the juncture  

with the blade. Iris setosa canadensis by contrast is prevailingly uniform, its 

customary blue grey occasionally becoming a little lighter or a little darker 

or even a little more towards the purple, and its tiny petals producing odd 

variants in form and pattern, but presenting on the whole only a fraction  

of the variability of Iris versicolor from the same pasture. 

The reasons for this uniformity are not far to seek. Its lower chromosome 

number is one, but a discussion of that and its bearings on the whole problem 

would be a treatise in itself. More important probably is the fact that 

by geological and biological evidence, Iris setosa canadensis is most certainly 

a remnant, a relict [sic] of what was before the glacial period a species widely 

spread in northern North America. 

If we take a map and plot thereon all known occurrences of Iris setosa and 

Iris setosa canadensis, we shall find the former growing over a large area  

at the northwest comer of the continent, and the latter clustering in a fairly 

restricted circle about the Gulf of St. Lawrence, while in the great intervening 

stretch of territory, none of these irises has been collected. This is 

a characteristic distribution for plants which were almost exterminated from 

eastern North America by the continental ice sheet, but while [sic] managed 

to persist in the unglaciated areas about the Gulf of St. Lawrence from which 

center they have later spread. In Alaska the species itself, Iris setosa, 

is apparently quite as variable as our other American irises.” 

So, we should pay tribute to Edgar Anderson by naming this data set 

after him – Anderson’s Iris data set. 
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MODEL DEVELOPMENT 

As indicated in (Markova, Semerikov, & Popel, 2018), the special course 

“Foundations of Mathematical Informatics” final control of knowledge is 

a credit by the presentation of individual education and research projects 

on the artificial neural networks built by using CoCalc. Students can be offered 

to use cloud-based spreadsheets, Google Sheets, with the Solver additional 

cloud-based component (add-in) which is similar to “Solver” in Excel Online. 

Let us consider the corresponding application method by taking 

a Anderson’s Iris data set to solve the pattern classification problem. 

Anderson’s Iris is composed of data on 150 measurements of three Iris species 

(Fig. 4) – Iris setosa, Iris virginica and Iris versicolor) – including 

50 measurements for each species. 

 

 
Figure 4. Anderson’s Irises 

 

There were measured four features (Fig. 5): sepal length (SL), sepal width 

(SW), petal length (PL), and petal width (PW). 

 

 
Figure 5. Measurement features of Anderson’s Irises 

 

To draw a grounded conclusion on the Iris type, we build a three-layered 

neural network with the following architecture (Fig. 6): 

- the input layer is a four-dimensional arithmetical vector (x1, x2, x3, x4) 

the components of which are corresponding measured features of Anderson’s 

Irises (SL, SW, PL, PW) normalized according to the network activation 

function; 

- the hidden layer has dimension 9 (the minimal required number according 

to Kolmogorov–Arnold representation theorem) and is described by the vector 

(h1, h2, h3, h4, h5, h6, h7, h8, h9); 
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- the output layer is a three-dimensional arithmetical vector (y1, y2, y3) 

the components of which are probabilities indicating the correspondence of the 

data set to one of the three Iris types. 

 

 
Figure 6. Architecture of the neural network to solve the problem of Anderson’s 

Iris classification 

 

The bias neuron equal to 1 (marked red in Fig. 6) is added to the neurons 

of the input and hidden layers. The bias neurons are noted for not having 

synapses so they cannot be located in the output layer. 

Let us first introduce Anderson’s Irises into spreadsheets with the following 

values of cells: A1 is Iris Data, A2 is SL, B2 is SW, C2 is PL, D2 is PW, E2 

is Species. 

The table cells A3:E152 include Anderson’s Irises (Fig. 7). 

 

 
Figure 7. The fragment of the spreadsheet of Anderson’s Irises 

 

We cannot input the data of the given set into the input layer as the value 

of the four characteristics is beyond the range limits [0; 1]. The next step is 
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normalization of columns A, B, C and D to meet the given range and coding 

of Iris types from column E. 

Each Iris type is coded by the three-dimensional arithmetical vector: for 

i-Iris (Iris setosa is 1, Iris versicolor is 2, Iris virginica is 3) we set the i-th 

component in 1, and the other ones – in 0. To do this, we introduce 

the following values into the cells: G1 is encoding, G2 is setosa, H2 is 

versicolor, I2 is virginica, G3 is =if($E3=G$2,1,0). 

Next, we copy the formula from the cell G3 to the range G3:I152 and obtain 

the following model codes for the three Iris types: for Iris setosa – (1, 0, 0), 

for Iris virginica – (0, 0, 1) and for Iris versicolor – (0, 1, 0). 

Each column is normalized separately. To perform this, we find minimum 

and maximum values by introducing the following values: E154 is min, E155 is 

max, A154 is =min(A3:A152), A155 is =max(A3:A152). 

We apply the cells A154:A155 to the range B154:D155 and introduce 

the following values into the cells: K1 is normalization, K2 is x1, L2 is x2, M2 is 

x3, N2 is x4, K3 is =(A3-A$154)/(A$155-A$154). 

The latter formula is applied to the range K3:N152. Its essence is explained 

by: 

              
     –   

   –   
. 

This approach results in the minimum value normalized to 0, while 

the maximum one – to 1. 

According to the chosen architecture, we add the bias neuron to the four 

neurons of the input layer by introducing its name (x5) into the cell O2 and its 

value (1) into the range O3:O152. On this stage, the input layer is formed as x1, 

x2, x3, x4, x5. 

The next step includes transmission of a signal from the input layer to 

the hidden one of the neural network. We denote the weight coefficient  

of the synapse connecting the neuron xi (i = 1, 2, 3, 4, 5) of the input layer 

with the neuron hj (j = 1, 2, ..., 9) of the hidden layer by wxh
ij, while the weight 

coefficient connecting the neuron hj of the hidden layer with the neuron  

yk (k = 1, 2, 3) of the input layer is denoted by why
jk . In this case, the force  

of the signal coming to the neuron hj of the hidden layer is determined as 

a scalar product of signal values on the input signals and corresponding weight 

coefficients. To determine a signal going further to the output layer, we apply 

the logistic function of activation f(S) = 1/(1+e–S), where S is a scalar product. 

The formulae for determining the signals on the hidden and output layers will 

look like: 

    (∑    

  
 

   

   

)      (∑    

  
 

   

   

)   

Accordingly, two matrices should be created. The matrix wxh of 59 contains 

weight coefficients connecting five neurons of the input layer (the first four 

contain normalized characteristics of Anderson’s Irises, while the fifth one is 
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the bias neuron) with the neurons of the hidden layer. The matrix why of 103 

contains weight coefficients connecting ten neurons of the hidden layer (nine 

of which are calculated and the tenth one is the bias neuron) with the neurons 

of the output layer. For the “untaught” neural network, initial values  

of the weight coefficients can be set either randomly or left undetermined or 

equal to zero. To realize the latter, we fill the cells with the following values: 

R1 is wxh, Q2 is input/hidden, R2 is 1, S2 is =R2+1, Q3 is 1, Q4 is =Q3+1, R3 is 0, 

R9 is why, Q10 is hidden/output, R10 is 1, S10 is =R10+1, Q11 is 1, Q12 is 

=Q11+1, R11 is 0. 

To create the matrices, we should copy the cells R3 into the range R3:Z7, 

R11 – into R11:T20, S2 – into T2:Z2, Q4 – into Q5:Q7, S10 – into T10, Q12 – 

into Q13:Q20 (Fig. 8). 

 

 
Figure 8. The fragment of the spreadsheet after coding and normalization  

of the output data and creation of the matrices of the weight coefficients 

 

To calculate the scalar product of the vector row of the input layer values by 

the matrix vector-column of the weight coefficients why, we should apply the 

matrix multiplication function: AB1 is calculate the hidden layer, AB2 is h1, 

AC2 is h2, AD2 is h3, AE2 is h4, AF2 is h5, AG2 is h6, AH2 is h7, AI2 is h8, AJ2 is h9, 

AK2 is h10, AB3 is =1/(1+exp(-mmult($K3:$O3,R$3:R$7))), AK3 is 1. 

Next, we copy the cell AK3 into the range AK4:AK152, while AB3 – into 

AB3:AJ152. 

Considering the fact that all the matrix elements of the weight coefficients 

wxh equal to zero, after duplicating the formulae, the calculated elements  

of the hidden layer will be equal to 0.5. 

In the same way, we calculate the output layer elements: AM1 is calculate 

the output layer, AM2 is y1, AN2 is y2, AO2 is y3, AM3 is 

=1/(1+exp(-mmult($AB3:$AK3,R$11:R$20))). 

Next, we copy the cell AM3 to the range AM3:AO152 (Fig. 9). 
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Figure 9. The fragment of the spreadsheet of calculating the hidden and output 

layers with initial values of the weight coefficients 

 

Neural network training is performed by varying weight coefficients so that 

with each training step the difference between the calculated values  

of the output layer and the desired (reference ones) reduces. To solve 

the problem, the three-dimensional vectors resulted from coding of the three 

Iris types are reference. 

To find the difference between the calculated and the reference output 

vectors we apply the Euclidean distance: AQ2 is distance, AR2 is sum 

of distances, AQ3 is =sqrt((AM3-G3)^2+(AN3-H3)^2+(AO3-I3)^2), AR3 is 

=sum(AQ3:AQ152). 

Next, we copy the cell AQ3 to the range AQ4:AQ152. The cell AR3 contains 

general deviation of the calculated output vectors from the reference ones. 

Under this approach, the neural network training can be treated as 

an optimization problem in which the target function (the sum of distances 

in the cell AR3) will be minimized by varying the matrix weight coefficients wxh 

(the range R3:Z7) and why (the range R11:T20). To solve this problem, 

application of cloud-based spreadsheets (Google Sheets) is not enough and it is 

necessary to install an additional cloud-based component (add-in) Solver. 

Adjustment of the add-in Solver to solve the set goal: the target function 

(Set Objective) is minimized (To: Min) by changing the values (By Changing) 

of the matrix weight coefficients in the range (Subject To) from –10 tо +10 by 

one of the optimization methods (Solving Method). 

To reduce the total distances, the actions with Solver can be done repeatedly 

as it is expedient to experiment with combination of various optimization 

methods by changing the variation limits of the weight coefficients. It is not 

necessary to try to reduce the value of the total distances to zero as this can be 

a greater (quite smaller) value (Fig. 10). 

On the assumption of the chosen coding method, the output vector actually 

contains three probabilities: yi denotes the probability of the given sample 

being the i-type Iris, where i = 1 for Iris setosa, 2 for Iris versicolor and 3 for Iris 

virginica. Then, to find out which Iris type describes the input vector (SL, SW, 

PL, PW), the most probable component should be determined. 

To do this, we fill the cells in the following way: AT2 is Calculated Iris 

species, AT3 is =if(max (AM3:AO3)=AM3,$G$2,if(max(AM3:AO3)=AN3,$H$2, 

$I$2)), AU3 is =if(AT3=E3, "right!", "wrong"). 

Next, the range AT3:AU3 is copied to the range AT4:AU152. 
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Figure 10. Optimization results 

 

The obtained result enables us to visualize pattern recognition simulated 

in spread-sheets. The built model will be considered relevant in all 150 cases, 

the column AU contains the value "right!". 

To check the limits of the built model application, we try to input the vector 

not coinciding with any reference input vector. For this, we copy the table row 

152 to 158 and delete the content of the cells E158:I158, AQ158, AU158. 

We introduce averaged values borrowed from the description of Iris versicolor 

in the article by Anderson (Pitts, & McCulloch, 1947, p. 463): 5.50, 2.75, 3.50 

and 1.25. The reference values x1 = 0.3333, x2 = 0.3125, x3 = 0.4237, x4 = 0.4792 

are conveyed to the input layer, while on the hidden layer there are calculated  

h1 – h9 and the values of the output layer y1 = 0.0000, y2 = 1.0000, y3 = 0.0000. 

As the maximum value of the output layer 1.0000 corresponds to the other Iris 

type, we can conclude that Iris versicolor is identified. 

CONCLUSIONS 

1. Extensive application of artificial intelligence in everyday life calls 

for students’ early acquaintance with its models and methods including neural 

network-based while teaching informatics at secondary schools. It conditions 

the need for developing training methods of computer simulation of neural 

networks in the general-purpose simulation environment, i.e. spreadsheets. 

2. Basic solutions of the problem of computer simulation training of neural 

networks in the spreadsheet environment include: 1) joint application 

of spreadsheets and network simulation tools; 2) application of third-party 

add-ins to spreadsheet processors; 3) macros development using embedded 

languages of spreadsheet processors; 4) application of standard spreadsheet 

add-ins for non-linear optimization; 5) creation of neural networks  

in the spreadsheet environment without add-ins and macros. 

3. Neural network simulation competences should be formed through 

mastering models based on the historical and genetic approach. The review 

of papers on computational neuroscience of its early period allows determining 

three groups of models, which are helpful for developing corresponding 
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methods: the continuous two-factor model of Rashevsky, the discrete model 

of McCulloch and Pitts, and the discrete-continuous models of Householder 

and Landahl. 

4. Edgar Anderson appeared to be not a simple botanist whose data were 

the basis for Fisher’s known method. Anderson’s Irises resulted from his long 

experience of working out relevant models to describe changes in specific 

populations by means of a limited number of characteristics. Yet, Anderson had 

also coped with the opposite problem of building simple multi-dimensional 

data interpretation 40 years before Chernoff faces appeared (Chernoff, 1973). 

5. The described methods of applying cloud-based spreadsheets as a tools 

for training mathematical informatics can enable solution of all basic problems 

of neural net-work simulation. The only limitation is not so much the volume 

of a spreadsheet as the memory space and the speed of the device processing it. 

In the special course projects if the limitation is overcome, this becomes 

a stimulus for replacing the simulation environment by a more relevant one 

(Teplytskyi, I. O., Teplytskyi, O. I., & Humeniuk, 2008). 
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