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2.4. Permutation based complexity measures and crashes

Introduction

The achievements of recent years in the field of quantitative description of
financial and economic systems are associated with the formation and develop-
ment of tools for the theory of complex systems [1] and its pragmatic branch —
econophysics [2]. The emergence of a large number of measures of complexity
made it possible to more effectively manage complex systems in conditions far
from equilibrium, predict and prevent critical and crisis phenomena [14].

Among the many complexity measures that have passed the test of time,
permutation based measures occupy an important place. Thus, introduced in
2002 by Bandt and Pompe permutation entropy [3] has become a theoretically
transparent and practically effective tool for quantifying the complexity of sys-
tems of various natures [4]. Introduced relatively recently, the permutation
measure of irreversibility of the time series [5] has expanded the range of per-
mutation measures of complexity.

The purpose of this work is to study the sensitivity of permutation
measures of complexity to crisis phenomena in markets that are different in
structure and dynamics; stock, cryptocurrency and oil.

The use of the Dow Jones index in calculating the permutation entropy
[6-9] was aimed at:

- to identify the difference in the behavior of the developed US market
with the emerging market of China [6];

- analysis of the frequency of allowed and prohibited patterns for the in-
dex since 1900 [7];

- study of the permutation entropy dynamics of during crises periods
[8, 9].

As for the crypto market, then authors [10-13] employed permutation en-
tropy with a rolling window approach to test for the market efficiency, cluster-
ing patterns Bitcoin prices, forecasting Bitcoin’s daily value at risk. In a series
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of our works [14, 15], permutation entropy is used to construct indicators-
precursors of crises in the crypto market.

There are relatively few studies on the permutation properties of the oil
market [4, 16, 17]. It should be noted one of the first works [16], in which the
authors compared the dynamics of permutation entropy with fluctuations of dai-
ly prices of crude oil WTI for the time period 1983-2015. They also showed
how several events occurred contemporary to changes in the informational
efficiency, providing evidence of some influence of main economic and political
milestones in the dynamics of the crude oil market. In our recent work [17], the
possibilities of permutation entropy in predicting crisis phenomena in the oil
market are compared with the possibilities of other measures of complexity.

Permutation entropy (PEN)

PEn is characterized by its simplicity, computational speed that does not
require some prior knowledge about the system, strongly describes nonlinear
chaotic regimes. Also, it is characterized by its robustness to noise and invari-
ance to nonlinear monotonous transformations. The combination of entropy and
symbolic dynamics turned out to be fruitful for analyzing the disorder for the
time series of any nature without losing their temporal information. According
to this method, we need to consider “ordinal patterns” that consider the order
among time series and relative amplitude of values instead of individual values.

For evaluating PEn, at first, we need to consider a time series{x; |1 =1,..., N}

which can be revealed in d - dimensional vector
XA) =% Xerp-or Xigqo ) FOr i=12,..., N=(d; -1,

where d. is the size of each embedded vector and 7z is an embedding delay be-

tween each vector.
After it, we consider d.! permutation patterns z=(k;, k;,..., K, ,) of

symbols (0,1,...,d. —1) if the following condition for each X(i) is satisfied:

X <X <

i+kgr — TNtk — 0 < Xi+kdEflr'
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We will use ordinal pattern probability distribution as a basis for entropy
estimation. Further, let us denote f(z,) as the frequency of occurrence of the

pattern z,. Then, the probability of occurrence of a specific pattern can be de-

fined as

f(m)
N—(d, -1z

p(m) =

Then, regarding the ordinal pattern probability distribution
= {p(;zl)|l :1,...,dE!}, the permutation entropy of the corresponding time

series can be defined following such equation:
S[P]= Z p(z)log p(m;).
If we need to compare time series with the described measure, we can
normalize S[P]:

e.rp]=SLP)

S

max

where S . =Ind.! is the highest value of PEn and 0<E_[P]|<1. There are

enormous number of studies which imply that PEn values close to 1 suggest the
presence of stochastic (random) processes; on the other hand, values close to 1
say about some deterministic patterns in the generating dynamics.

The first tusk that scientist solve applying PEn is the choice of appropri-
ate set of parameters d.! and 7. As d.! defines the number of possible states

that the embedded fragments can be in. Following Bandt and Pompe’s recom-
mendation [3], it is common to choose the values of d. that satisfy the condition

d:!<< N for the appropriate probability distribution. For small values, such as
dz =2, procedure may not be accurate enough, since there are only few particu-
lar states — 7, ={0,1} and =, ={1, 0}. We will define the best set of parameters

empirically.
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Permutation based time irreversibility measure

We can define a time series as a reversible when there is an abundance
of invariance of its statistical properties after operation of reversibility. Thus, for

a given time series X={x|i=1...,N}, its time reversed version
X" ={x |i=N,...,1} is said to be reversible if for a mapping function f (),

f(X) ~ f(?t'r'). Processes that are characterized as nonlinear, non-extensive,

non-Gaussian, and with the presence of memory can be classified as irreversible.
Assessing irreversibility of a system is equivalent to its predictability. Thus,
procedure for obtaining ordinal patterns from permutation entropy approach will
see to be reasonable in our case.

First of all, let is give an example of the procedure for calculating the
necessary indicator of irreversibility. According to mentioned steps, we will
construct embedded matrix of overlapping vectors with d. =3 and 7 =1 for the

fragment of West Texas Intermediate (WTI) crude oil price for period
14.07.2008-26.07.2008 (https://www.eia.gov/dnav/pet/pet_pri_spt_s1 d.htm):

X" ={145.16,138.68, 134.63,129.43, 128.94,131.43, 127.25}

and
X" ={127.25,131.43,128.94,129.43,134.63,138.68, 145.16}.
Then, our embedded data can be presented in the following form:
145.16 138.68 134.63 129.43 128.94
Yd(dE,r): 138.68 134.63 129.43 128.94 131.43
134.63 129.43 128.94 131.43 127.25
and

127.25 131.43 128.94 129.43 134.63
X "(d,,7)=|131.43 128.94 129.43 134.63 138.68
128.94 129.43 134.63 138.68 145.16

After it, our time-delayed vectors are mapped to permutations or ordinal

patterns of the same size. Our example consists 3! = 6 different ordinal patterns.
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These patterns can be composed in such a way that a time-reversible version of
the same pattern will be paired with it:

{0,121 <>{2,1, 0}
L0, 2}<>£2,0,13
{12,050, 2,13

t.r.
with <> representing a time reversal transformation.
Thus, we map our time delayed matrices to ordinal matrices:

2 2211 01000
X'(de)=]1 1 1 0 2| and X (d.,7)=|2 2 1 1 1|
00020 102 2 2

According to our directed ordinal matrix, frequently we can observe pat-
tern with two consecutive decreasing values, i.e., 7° ={2,1, 0}; as this pattern
does not appear in time reversed ordinal matrix, we can be certain about the time
directionality of out time series. An opposite pattern 7" ={0,1, 2} appears with

the same frequency, which is time-reversed equivalent of our directed version.
Thus, we can conclude out time reversibility of our time series, and opposite
conclusions would be drawn for an irreversible version. This idea is a basis for
the measure described below.

The irreversibility magnitude can be quantified by comparing the proba-
bility distributions of the patterns appearing in the original and time-reversed
series through the Kullback-Leibler divergence [5, 18]. Following the example
above, we construct the probability distribution for directed and reversed ver-
sions:

P! = [ Pro,1,2: = 0; P10y = 0.6; Ppo,23 = 0.2; Pr2.013 = 0; P 200 = 0.2, P23 = 0]
and
P’ :[p{2,1, 0y~ 0; Pro,1,2 = 0.6; Pe203 = 0; P02y = 0; Pro, 2.3 = 0.2; P2, 03 = 0.2] .

The difference between two distributions then can be estimated through

the following formula:
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Pd(l)+8

ZP (i)log—=2— )+ 2

where & <<minP? and ¢ <<minP", since the argument of the logarithm can be
p{1,0,2}/ P2, 0,13 =0.2/0.
Consequently, if D, ~0, the probability distributions of directed and

time-reversed series should be approximately the same, and time series in this
case is presented to be reversible. On the other hand, as D,, — o, dynamics of

the system becomes more irreversible.
Empirical results for financial time series

Nowadays WTI crude oil, Bitcoin, and DJIA are presented to be one of
the most influential assets, having a significant impact on the world economy. In
our previous articles we have advanced into action and set the tasks (1) to make
an appropriate classification of such events that are predictable and not predicta-
ble and (2) to construct such indicators that will identify in advance crashes and
critical events in order to allow investors and ordinary users to work in these
markets. Our studies present that their price behavior is regime-switching. Such
switching reveals in high risk (completely random) and low risk (deterministic)
environments. Some of those events are much more predictable, less efficient,
and exhibit corresponding complexity patterns that can serve as indicators of
further falling.

This work focuses only on the most influential crisis events of WTI and
DIJIA, while in the Bitcoin market, all the crises discussed in previous works
were selected and supplemented. The data we use here for our analysis are the
daily closing prices of

e the crude oil price over the period from 2 January 1986 to 23 March
2021;

e the DJIA price for the period from 4 January 1983 to 23 March 2021,

e BTC time series that was divided into two periods: from 1 January
2011 to 31 August 2016 and from 1 September 2016 to 23 March 2021.
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During these periods, markets have experienced varying degrees of vola-
tility.

Calculations were carried out within the framework of the algorithm of a
moving window. For this purpose, in each time window (frame) there was se-
lected a part of a time series for which we calculated the measures of complexity
(irreversibility). Then the window was displaced along with the time series in a
predefined value, and the procedure repeated until all the studied series had ex-
hausted. Further, comparing the dynamics of the actual time series and the cor-
responding measures, we can judge the characteristic changes in the dynamics of
the behavior of complexity with changes in the system. If these measures behave
in a definite way, example, increase or decrease during (pre-) crisis period, then
it can serve as a measure of complexity (irreversibility) for a studying system.

Each measure was calculated regarding normalized returns, were returns
can be calculated following the equation below:

G(t) =Inx(t + At) —Inx(t) = [x(t + At) — x(t)]/ x(t).
Normalized returns can be found with the following formula:
g(1) =[G(1) - (G)l/ o,
where o is the standard deviation of G, At is the time lag between prices (in
our case At=1), and () Is the average over the time period under study.

Figures below present a comparative dynamics of studied financial sys-
tems and corresponding measures.

Comparison of the results for different window sizes shows that an in-
crease in the window size leads to poor resolvability of crisis phenomena close
in time. Therefore, in the future, in particular, in the case of the oil market, we
chose a window of 250 days. For the more volatile cryptocurrency market, the
optimal window was 100 days.
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Fig. 1. Comparative dynamics of DJIA index along with its normalized returns
g and D,, calculated for rolling window of 250 days and step size of 1 day
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Fig. 2. Comparative dynamics of DJIA index along with its normalized returns
g and D,, calculated for rolling window of 500 days and step size of 1 day
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Fig. 3. Comparative dynamics of DJIA index along with its normalized returns
g and PEn calculated with rolling window of 250 days and step size of 1 day
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Fig. 4. Comparative dynamics of DJIA along with PEn calculated with rolling

window of 500 days
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Fig. 5. Comparative dynamics of the first (a) and second (b) BTC periods along
with PEn calculated for rolling window of 100 days and step size of 1 day
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Fig. 7. Comparative dynamics of the oil price along with PEn calculated
for rolling window of 250 days and step size of 1 day
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Fig. 8. Comparative dynamics of the oil price along with D,, calculated for

rolling window of 250 days and step size of 1 day

Empirical results present that discussed measures are able to distinguish
completely random dynamics from deterministic (predictable). In the case of
PEn, as this measure become higher, the complexity of the system increases and
vise versa. For irreversibility measure based on permutation patterns we have
more reversible dynamics for crashes or critical events and more irreversible for

usual states.
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Conclusions

The obtained quantitative methods were applied to emphasized crisis
states in oil, crypto, and stock markets, where it was seen that these indicators
can be used in order to identify critical changes in advance. To draw some con-
clusions about its evolutions and factors that influence it, we pointed out the
most influential critical changes in this market.

Regarding empirical results, we could see that some of the measures are
very sensitive to the length of the sliding window and its time step. For example,
iIf we consider two closest to each other events, a previous event that had much
more volatility can have a great influence on the corresponding measure of
complexity or irreversibility and spoil the identification of the next less influen-
tial, but important event. Thus, time localization is significant while calculating
the measure of complexity. The less time localization and time step, the more
corresponding changes are taken into account. For a much larger time window
and its step, we can have less accurate estimations.

Nevertheless, as we could see, both measures are presented to be robust
and informative. Moreover, the predictive power of permutation entropy is even
more characteristic in comparison with the indicator of irreversibility. In further,
it would be interesting to test another types of entropies and irreversibility
measures.
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