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Abstract. The article substantiates the necessity to develop training methods of computer simulation of 
neural networks in the spreadsheet environment. The systematic review of their application to simulating 
artificial neural networks is performed. The authors distinguish basic approaches to solving the problem of 
network computer simulation training in the spreadsheet environment, joint application of spreadsheets and 
tools of neural network simulation, application of third-party add-ins to spreadsheets, development of 
macros using the embedded languages of spreadsheets; use of standard spreadsheet add-ins for non-linear 
optimization, creation of neural networks in the spreadsheet environment with-out add-ins and macros. The 
article considers ways of building neural network models in cloud-based spreadsheets, Google Sheets. The 
model is based on the problem of classifying multi-dimensional data provided in “The Use of Multiple 
Measurements in Taxonomic Problems” by R. A. Fisher. Edgar Anderson’s role in collecting and preparing 
the data in the 1920s-1930s is discussed as well as some peculiarities of data selection. There are presented 
data on the method of multi-dimensional data presentation in the form of an ideograph developed by 
Anderson and considered one of the first efficient ways of data visualization. 

1 Introduction 
The Fourth Industrial Revolution (Industry 4.0) has 
become a system-related challenge for the scientific 
community [46]. Industry 4.0 is primarily characterized 
by evolution and convergence of nano-, bio-, information 
and cognitive technologies to enhance high quality 
transformations in economic, social, cultural and 
humanitarian spheres. Professionals dealing with 
development and introduction of the sixth techno-logical 
paradigm technologies determine to a great extent 
whether our country is able to ride the wave of Industry 
4.0 innovations. Therefore, extensive implementation of 
ICT is a top priority of Ukraine’s higher education 
updating in order to form a professionally competent 
specialist able to ensure the country’s innovative 
development. 

According to the Decree of the Cabinet of Ministers of 
Ukraine “Certain issues of specifying medium-term 
priorities of the national-level innovative activity for 
2017-2021” (2016), developing modern ICT and robotics, 
particularly cloud technologies, computer training 
systems and technologies of mathematical informatics 
(intellectual simulation, informational security, long-term 
data storage and “big data” management, artificial 
intelligence systems) are nationally and socially 
important directions of the innovative activity [28; 29]. 
The Decree of the Cabinet of Ministers of Ukraine 
“Certain issues of specifying medium-term priorities of 
the sectoral-level innovative activity for 2017-2021” 

(2017) specifies that these directions accompanied by 
smart web-technologies and cloud computing make the 
basis for creating and defining themes for scientific 
researches and technical (experimental) developments as 
well as for forming the state order of training ICT 
specialists. 

For the past 25 years, the authors have been 
developing the concept of systematic computer 
simulation training at schools and teachers’ training 
universities. The concept ideas have been generalized and 
presented in the textbook [53]. Spreadsheets are chosen to 
be the leading environment for computer simulation 
training, their application discussed in articles [47]. Using 
spreadsheet processors (autonomous, integrated and 
cloud-based) as examples, the authors demonstrate 
components of teaching technology of computer 
simulation of determined and stochastic objects and 
processes of various nature. The systematic training of 
simulation provides for changing and integrating 
simulation environments ranging from general 
(spreadsheets) to specialized subject-based ones. While 
teaching computer simulation of intellectual systems 
specialized languages and programming environments are 
traditionally used. They can be easily mastered by first-
year students [1]. One of the most wide-spread languages, 
Scheme, is offered to be applied to teaching computer 
simulation of classical mechanics at universities [51]. 
Extensive application of artificial intelligence in everyday 
life calls for students’ early acquaintance with its models 
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and methods including neural network-based while 
teaching informatics at secondary schools [48]. It 
conditions the need for developing training methods of 
computer simulation of neural networks in the general-
purpose simulation environment, i.e. spreadsheets. 

2 Literature review and problem 
statement 
The first description of spreadsheet application to 
teaching neural network simulation of visual phenomena 
dates back to 1985 and belongs to Thomas T. Hewett, 
Professor of the Department of Psychology of Drexel 
University [17]. In [16] there are de-scribed simple 
models of microelectrode recording of two neuron types 
of neural activity – receptors and transmitters localized in 
two brain-hemispheres. Thomas T. Hewett offered 
psychology students to independently choose coefficients 
of intensifying or reducing input impulses to achieve the 
desired output: “... the simulations can be designed in such 
a way that the student is able to "experiment" with a 
simulation-experiment both in the sense of discovering 
the characteristics of an unknown model and in the sense 
of modifying various components of a known model to 
see how the simulation is affected” [16, p. 343]. This 
approach implies simultaneous studying a neural network 
and understanding its functioning as psychology students 
conclude the laws of the neural impulse spread by 
applying the trial-and-error method. 

In his article [8], James J. Buergermeister, Professor 
of Hospitality and Tourism Management of University 
Wisconsin-Stout, associates electronic spreadsheet 
application with basic principles of training technology 
and methods of data processing (Fig. 1). The author does 
not work out the methods of applying electronic spread-
sheets to neural network simulation in detail, yet, the 
presented scheme reveals such basic steps as data 
obtainment, semantic coding, matching with an etalon, 
etc. 

Since 1988, Murray A. Ruggiero, one of the pioneers 
of autotrading, has been developing Braincel, an 
application for Microsoft Excel 2.1C, which is a set of 
twenty macros to solve tasks of image recognition by 
artificial neural network tools [23]. At the beginning of 
1991, Murray A. Ruggiero received a patent “Embedding 
neural networks into spreadsheet applications” [45], 
which describes an artificial neural net-work with a 
plurality of processing elements called neurons arranged 
in layers. They further include interconnections between 
the units of successive layers. A network has an input 
layer, an output layer, and one or more “hidden” layers in 
between, necessary to allow solutions of non-linear 
problems. Each unit (in some ways analogous to a 
biological neuron: dendrites – input layer, axon – output 
layer, synapses – weights [43], soma – summation 
function) is capable of generating an output signal which 
is determined by the weighted sum of input signals it 
receives and an activation function specific to that unit. A 
unit is provided with inputs, either from outside the 
network or from other units, and uses these to compute a 
linear or non-linear output. The unit’s output goes either 
to other units in subsequent layers or to outside the 

network. The input signals to each unit are weighted by 
factors derived in a learning process. 

When the weight and activation function factors have 
been set to correct levels, a complex stimulus pattern at 
the input layer successively propagates between the hid-
den layers, to result in a simpler output pattern. The 
network is “taught” by feeding it a succession of input 
patterns and corresponding expected output patterns. The 
net-work “learns” by measuring the difference at each 
output unit between the expected output pattern and the 
pattern that it just produced. Having done this, the internal 
weights and activation functions are modified by a 
learning algorithm to provide an output pattern which 
most closely approximates the expected output pattern, 
while minimizing the error over the spectrum of input 
patterns. Neural network learning is an iterative process 
involving multiple lessons. Neural networks have the 
ability to process information in the presence of noisy or 
incomplete data and yet still generalize to the correct 
solution. 

In his patent, Murray A. Ruggiero details a network 
structure (multi-level), an activation function (sigmoidal), 
a coding method (polar), etc. He presents a mathematical 
apparatus for network training and determines a method 
of data exchange between a spreadsheet processor nucleus 
and an add-in to it. The patent author suggests storing 
input data in columns, maximum and minimum values for 
each column of input data, the number of learning 
patterns. Data can be normalized or reduced to the polar 
range [0; 1] both in spreadsheets and add-ins. 

In his article of 1989, Paul J. Werbos, the pioneer of 
the backpropagation method for artificial neural network 
training [55] demonstrates how to make the 
corresponding mathematical apparatus simpler to use it 
directly in the spreadsheet processor. The cycling 
character of training is supported by a macro that 
exchanges data between lines to avoid restrictions on the 
number of iterations because of the limited number of 
lines on a sheet of a separate spreadsheet. Some other 
authors suggest applying a similar approach of macros 
application [14; 57]. 

The authors of [24] in Chapter 2 “Neural Nets in 
Excel” give an example of applying the non-linear 
optimization tool, Microsoft Excel Solver, to forecasting 
stock prices using the “grey-box” concept, in which the 
model is evident, yet, the details of its realization are 
hidden. 

In their article of 1998 [15], Tarek Hegazy and Amr 
Ayed from the Department of Civil Engineering at 
University of Waterloo distinguish the corresponding 
steps. Unlike [44], the authors suggest using bipolar data 
normalization (over the range of [–1; 1]) and a hyperbolic 
tangent as an activation function. Three addins for 
Microsoft Excel are used to determine weighting factors – 
the standard Solver and third-party add-ins (NeuroShell2 
and GeneHunter by Ward Systems Group). Experiment 
results reveal that the best result is provided by the 
optimizing general-purpose tool (Solver) and not by 
specialized ones. In spite of the fact that “Journal of 
Construction Engineering and Management” does not 
refer to educational editions, the article [15] and the paper 
[7] by their structure and focus on details can be 
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considered the first description of methodic of using 
spreadsheets for neural network simulation. 

In their article of 2012 [43], Thomas F. Rienzo and 
Kuriakose K. Athappilly from Haworth College of 
Business at Western Michigan University consider model 
illustrating the process of machine learning as networks 
examine training data would provide another. Authors 
incorporate the stepwise learning processes of artificial 
neural network in a spreadsheet containing (1) a list or 

table of training data for binary input combinations, (2) 
rules for target outputs, (3) initial weight factors, (4) 
threshold values, (5) differences between target outputs 
and neural network transformation values, (6) learning 
rate factors, and (7) weight adjustment calculations. 
Unlike the previous ones, this model is invariant to the 
spreadsheet and does not call for applying any third-party 
addins. 

 
 

 

Fig. 1. The information-processing model using spreadsheet events (according to [8]) 

 

  

     , 0 https://doi.org/10.1051/ conf/20SHS Web of Conferences 75 4018 (2020) shs 207504018
ICHTML 2020

3



 

In [28] the role of neural network simulation in the 
training content of the special course “Foundations of 
Mathematical Informatics” is discussed. The course is 
developed for students of technical universities (future IT-
specialists) and aimed at breaing a gap between theoretic 
computer science and its practical application to software, 
system and computing engineering. CoCalc is justified as 
a training tool for mathematical informatics in general and 
neural network modelling in particular. The elements of 
CoCalc techniques for studying the topic “Neural network 
and pattern recognition” within the special course 
“Foundations of Mathematical Informatics” are shown. 

The authors of [47] distinguish basic approaches to 
solving the problem of network computer simulation 
training in the spreadsheet environment, joint application 
of spreadsheets and tools of neural network simulation. In 
[48], there are opportunities for applying spreadsheets to 
introducing essentials of machine learning [31] at 
secondary and higher school as well as some elements of 
their application to solving problems of pattern 
classification. Thus, using spreadsheets as a tool for 
teaching basics of machine learning creates conditions for 
early and simultaneously deeper mastering of 
corresponding models and methods of mathematical 
informatics [2]. 

The conducted review makes it possible to find the 
following solutions of the problem of computer 
simulation teaching to neural networks in the spreadsheet 
environment: 
- joint application of spreadsheets and neural network 
tools [32], in which data is exported to the unit calculating 
weighting factors imported to spreadsheets and used in 
calculations; 
- application of third-party add-ins for spreadsheets ([15; 
23; 45]), according to which structured spreadsheet data 
is processed in the add-in, calculation results are arranged 
in spreadsheet cells; 
- macros development ([7; 14; 55; 57]) enables direct 
software control over neural network training and creation 
of a user’s specialized interface; 
- application of standard add-ins for optimization ([15; 
24]) calls for transparent network realization and 
determination of an optimization criterion (minimization 
of a squared deviation total of the calculated and etalon 
outputs of the network); 
- creation of neural networks in the spreadsheet 
environment without add-ins and macros [43] requires 
transparent realization of a neural network with evident 
de-termination of each step of adjustment of its weighting 
factors. 

The advantage of the first solution is its flexibility as 
one can choose any relevant combinations of the 
simulation environments, yet, their integration level is 
usually insufficient. The closed character of the second 
solution and its binding to a certain software platform 
make it relevant to be applied to solving various practical 
tasks and irrelevant for neural network simulation training 
as a network becomes a black box for a user. The fourth 
solution is partially platform-dependent as a neural 
network becomes a grey box for a user. The final solution 
is totally mobile and offers an opportunity to regard the 

model as a white box, thus making it the most relevant for 
initial mastering of neural network simulation methods. 

3 The aim and objectives of the study 
The research is aimed at considering mathematical 
models of neural networks realized in spreadsheet 
environment. To accomplish the set goal, the following 
tasks are to be solved: (1) to study historical models of 
neural networks; (2) to distinguish learning tools of 
computer simulation of neural networks in the 
spreadsheet environment; (3) to substantiate the chosen 
dataset to develop a model; (4) to develop a demonstration 
model of an artificial neural network using cloud-based 
spreadsheets. 

4 Early neural networks models: from 
William James to Walter Pitts 
Russell C. Eberhart and Roy W. Dobbins [12] suggest 
dividing the history of artificial network development into 
four stages. The first stage, the Age of Camelot, starts with 
“The Principles of Psychology” (1890) by the American 
psychologist, William James, who formulates the 
elementary law of association: “When two elementary 
brain processes have been active together or in immediate 
succession, one of them, on reoccurring, tends to 
propagate its excitement into the other” [22, p. 566]. The 
elementary law of association (the elementary principle) 
is closely related to the concepts of associative memory 
and correlational learning. In the authors’ opinion [12], 
James seemed to foretell the notion of a neuron’s activity 
being a function of the sum of its inputs, with past 
correlation history contributing to the weight of 
interconnections: “The amount of activity at any given 
point in the brain-cortex is the sum of the tendencies of all 
other points to discharge into it, such tendencies being 
proportionate (1) to the number of times the excitement of 
each other point may have accompanied that of the point 
in question; (2) to the intensity of such excitements; and 
(3) to the absence of any rival point functionally 
disconnected with the first point, into which the 
discharges might be diverted” [22, p. 567]. 

In “Psychology” (1892), an abridged re-edition of 
“The Principles of Psychology”, James formulates basic 
principles of the image recognition theory: “We know, in 
short, a lot about it, whilst as yet we have no acquaintance 
with it. Our perception that one of the objects which turn 
up is, at last, our qucesitum, is due to our recognition that 
its relations are identical with those we had in mind, and 
this may be a rather slow act of judgment. Every one 
knows that an object may be for some time present to his 
mind before its relations to other matters are perceived. 
Just so the relations may be there before the object is.” 
[21, p. 275]. 

“The Bulletin of Mathematical Biophysics” has been 
an advanced platform for approbating network models 
and methods since the moment of its foundation by 
Nicolas Rashevsky [11]. It should be no surprise as 
Rashevsky invented one of the first models of the neuron 
[40] and started the idea of artificial neural networks. The 
basic idea was to use a pair of linear differential equations 
and a nonlinear threshold operator: 
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where θ is the threshold, e and j could represent excitation 
and inhibition or the amount or concentration of two 
substances within a neuron, H (x) is the Heaviside 
operator (takes positive values to 1, and non-positive 
values to 0). This gives an easy way to model the all-or-
none firing of a neuron – Rashevsky showed that this 
simple model was able to model many of the known 
experimental results for the behavior of single neurons. 
He also made the point that networks of these model 
neurons could be connected to give quite complicated 
behavior and even serve as a model for a brain [11]. 

In his article of 1941 [56], Gale J. Young shows that 
the Rashevsky’s two-factor model of nerve excitation can 
account for sustained inhibition or enhancement by a 
sequence of stimulus pulses, and for the decrease in the 
reinforcement period with each successive pulse of the 
train. 

Developing Rashevsky’s ideas, his student Alston 
Scott Householder, who gave his name to the known 
linear transformation describing a reflection about a plane 
or hyperplane containing the origin, and a class of root-
finding algorithms used for functions of one real variable 
with continuous derivatives up to some order, in his article 
of 1940 [19], suggests a parameter measuring the 
“strength” of the inhibitory neurons acting among the 
terminal synapses. In [20], he describes the activity 
parameter as a characteristic of the fiber which is assumed 
to be different from zero, but it may be either positive 
(when the fiber is excitatory in character) or negative 
(when the fiber is inhibitory in character). 

Thus, at the beginning of 1942, the theory of 
biological neural networks based on Rashevsky’s 
continuous two-factor model was created and intensively 
developed. As remembered by J. A. Anderson and 
E. Rosenfeld, at the boundary of two decades, Walter Pitts 
was introduced to Nicolas Rashevsky by Rudolf Carnap, 
and accepted in to his mathematical biology group [10]. 
In his early publication, Pitts suggests “a new point of 
view in the theory of neuron networks is here adumbrated 
in its relation to the simple circuit: it is shown how these 
methods enable us to extend considerably and unify 
previous results for this case in a much simpler way” [36, 
p. 121]. With due consideration of Householder’s articles, 
Pitts determines the total conduction time of a fiber as the 
sum of its conduction time and the synaptic delay at the 
postliminary synapse. Pitts was the first to use spreadsheet 
abstraction and discrete description of neural network 
functioning by determining a corresponding algorithm: 
Pitts was the first to use spreadsheet abstraction and 
discrete description of neural network functioning by 
determining a corresponding algorithm: “The excitation-
pattern of [neural circuit] C may be described in a matrix 
E, of n rows and an infinite number of columns, each of 

whose elements ers represents the excitation at the synapse 
sr during the interval (s, s+1). The successive entries in the 
excitation matrix E may be computed recursively from 
those in its first column – these are the quantities λr – by 
the following rule, whose validity is evident: Given the 
elements of the p-th column, compute those of the p+l-st 
thus: if the element eip is negative or zero, place σi+l in the 
i+l-st row and p+1-st column, or in the first row of the 
p+l-st column if i=n. Otherwise put σi+l+aieip, in this 
place. We shall say that C is in a steady-state during a 
series of n intervals (s, s+1), ..., (s+n–1, s+n) if, for every 
p between s and s+n, the p-th and p+n-th columns of E 
are identical. If s is the smallest integer for which this is 
the case, we shall say that the steady state begins at the 
interval (s, s+1)” [36, pp. 121–122]. The suggested 
algorithm describes a parallel neural network [36, p. 122]. 
Rather than analyzing the steady-state activity of 
networks, Pitts was more concerned with initial 
nonequilibrium cases, and how a steady state could be 
achieved [2, p. 18]. 

The results provided by Pitts in his articles on the 
linear theory of neuron networks (the static problem [38] 
and the dynamic problem [37]), enabled him to draw two 
essential conclusions: (1) it is possible to find a set of 
independent networks each of which consists of n simple 
circuits with one common synapse (rosettes), such that 
network arises by running chains from the centers of the 
rosettes to various designated points outside: but none 
back, so that the state of the whole network is determined 
by the states of the separate rosettes independently – Pitts 
calls networks of this kind canonical networks [37, p. 29]; 
(2) given any finite network, it is possible to find a set of 
independent rosettes such that the excitation function of 
network for every region is a linear combination of those 
of the rosettes – i. e., we can reduce any network to a 
canonical network having the same excitation function 
[37, p. 31]. Thus, in his article of 1943, Pitts solves the 
inverse network problem, “which is, given a preassigned 
pattern of activity over time, to construct when possible a 
neuron-network having this pattern” [37, p. 23] by 
allowing creating problem-oriented neural networks. Tara 
H. Abraham indicates that adopting Householder’s model 
of neural excitation, Pitts develops a simpler procedure 
for the mathematical analysis of excitatory and inhibitory 
activity in a simple neuron circuit, and aimed to develop 
a model applicable to the most general neural network 
possible [2]. 

“Psychometrika”, the official journal of the 
Psychometric Society (both founded in 1935 by Louis 
Leon Thurstone, Edward Lee Thorndike and Joy Paul 
Guilford), is devoted to the development of psychology as 
a quantitative rational science. It has become another 
mouthpiece of Nicolas Rashevsky and his students, whose 
articles examine statistical methods, discuss mathematical 
techniques, and advance theory for evaluating behavioral 
data in psychology, education, and the social and 
behavioral sciences generally. Pitts’s article “A general 
theory of learning and conditioning” has been published 
in this journal. Part I [34] deals only with the case where 
the stimuli and responses are wholly independent, so that 
transfer and generalization do not occur, and proposes a 
law of variation for the reaction-tendency, which takes 
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into ac-count all of classical conditioning and the various 
sorts of inhibition affecting it. Part II [35] extends a 
mathematical theory of non-symbolic learning and 
conditioning, still under the hypothesis of complete 
independence, to cases where reward and punishment are 
involved as motivating factors. The preceding results are 
generalized to the case where stimuli and responses are 
related psychophysically, thus constituting a theory of 
transfer, generalization, and discrimination. 

Another article of 1943, “A logical calculus of the 
ideas immanent in nervous activity” [30], published again 
in “Bulletin of Mathematical Biophysics”, has resulted 
from cooperation of Warren Sturgis McCulloch and 
Walter Pitts and is considered one of the most famous 
papers on artificial neural networks. They stated five 
physical assumptions for nets without circles [30, p. 118]: 
1. The activity of the neuron is an “all-or-none” process 
[any nerve has a finite threshold and the intensity of 
excitation must exceed this for production of excitation – 
once produced, the excitation proceeds independently of 
the intensity of the stimulus]. 
2. A certain fixed number of synapses must be excited 
within the period of latent addition [time during which the 
neuron is able to detect the values present on its in-puts, 
the synapses – typically less than 0.25 msec] in order to 
excite a neuron at any time, and this number is 
independent of previous activity and position on the 
neuron. 
3. The only significant delay within the nervous system is 
synaptic delay [time delay between sensing inputs and 
acting on them by transmitting an outgoing pulse, – 
typically less than 0.5 msec]. 
4. The activity of any inhibitory synapse absolutely 
prevents excitation of the neuron at that time. 
5. The structure of the net does not change with time. 

The neuron described by these five assumptions is 
known as the McCulloch-Pitts neuron [12, p. 17]. In the 
same way as propositions in propositional logic can be 
“true” or “false,” neurons can be “on” or “off” – they 
either fire or they do not: this formal equivalence allowed 
them to argue that the relations among propositions can 
correspond to the relations among neurons, and that 
neuronal activity can be represented as a proposition [29, 
p. 19]. 

In [30], there is a set of theorems that “does in fact 
provide a very convenient and workable procedure for 
constructing nervous nets to order, for those cases where 
there is no reference to events indefinitely far in the past 
in the specification of the conditions” [30, pp. 121–122]. 
McCulloch and Pitts appear to be the first authors since 
William James to describe a massively parallel neural 
model. The theories they developed were important for a 
number of reasons, including the fact that any finite 
logical expression can be realized by networks of their 
neurons. 

Combining simple “logical” neurons in chains and 
cycles, the authors show that the brain is able to perform 
any logical operation and arbitrary logical calculations. 
The paper is essential for developing computing machines 
as it allows creating a universal computer operating with 
logical expressions (in the hands of John von Neumann, 

the McCulloch-Pitts model becomes the basis for the 
logical design of digital computers [11, p. 180]): “It is 
easily shown: first, that every net, if furnished with a tape, 
scanners connected to afferents, and suitable efferents to 
perform the necessary motor-operations, can compute 
only such numbers as can a Turing machine; second, that 
each of the latter numbers can be computed by such a net; 
and that nets with circles can be computed by such a net; 
and that nets with circles can compute, without scanners 
and a tape, some of the numbers the machine can, but no 
others, and not all of them. This is of interest as affording 
a psychological justification of the Turing definition of 
computability and its equivalents, Church’s λ-definability 
and Kleene’s primitive recursiveness: If any number can 
be computed by an organism, it is computable by these 
definitions, and conversely.” [30, pp. 121–122]. 

In the same issue of “Bulletin of Mathematical 
Biophysics”, in which [30] was published, Herbert Daniel 
Landahl (the first doctoral student in Rashevsky’s 
mathematical biology program at the University of 
Chicago, who became the second President of the Society 
for Mathematical Biology in 1981), Warren Sturgis 
McCulloch and Walter Pitts published a short (about 3 
pages), yet essential addition [25], suggesting a method 
for converting logical relations among the actions of 
neurons in a net into statistical relations among the 
frequencies of their impulses. In the presented theorem, 
they detailed transition from Boolean calculations (in 
“true” and “false”) to probabilistic ones (numbers within 
[0; 1]): the conjunction sign ˅ is replaced by +, the 
disjunction sign (single dot) is replaced by ×, negation ~ 
is replaced by «1 –», etc. The correspondence expressed 
by this theorem connects the logical calculus of the [30] 
with previous treatments of the activity of nervous nets in 
mathematical biophysics and with quantitatively 
measurable psychological phenomena. 

The monograph by Householder and Landahl 
“Mathematical Biophysics of the Central Nervous 
System” has become a kind of conclusion of the discussed 
period [18]. In Paul Cull’s opinion, there is no 
unambiguous answer to the question which model is 
better, the Rashevsky continuous model or the 
McCulloch-Pitts discrete model: “For some purposes, one 
model is better, but for other purposes, the other model is 
better. Rashevsky and Landahl were quick to notice, that 
in physics, one often averaged over a large set of discrete 
events to obtain a continuous model which represented the 
large scale behavior of a system, and so they posited that 
the continuous neuron model might be suitable for 
modeling whole masses of neurons even if each individual 
neuron obeyed a discrete model. In the hands of 
Householder and Landahl, this observation led to the idea 
of modeling psychological phenomena by neural nets 
with a small number of continuous model neurons. In 
particular, they found that the cross-couple connection 
[Fig. 2] was extremely useful. For such problems as 
reaction time, enhancement effects, flicker phenomena, 
apparent motion, discrimination and recognition, they 
were able to fit these models to experimental data and to 
use their models to predict phenomena that could be 
measured and verified” [11, p. 180]. 
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Fig. 2. This cross-couple connection of four neurons is capable 
of modeling a large number of phenomena (according to [46]) 

In 1945, Rashevsky wrote about [30] and [25]: 
“authors show that by applying logical calculus, it is 
possible to construct any complicated network having 
given properties. One could attempt to construct by the 
method of McCulloch and Pitts a network that would 
represent all modes of logical reasoning, and then apply 
the usual methods of mathematical biophysics to derive 
some quantitative relations between different 
manifestations of the processes of logical thinking” 
[39, p. 146]. “It seems somewhat awkward to have to 
construct by means of Boolean algebra first a 
"microscopic circuit" and then obtain a simpler one by a 
transition to the "macroscopic" picture. We should expect 
that a generalization of the application of Boolean algebra 
should be possible so as to permit its use for the 
construction of networks in which time relations are of a 
continuous rather than of a quantized, nature” 
[41, p. 211]. 

Rashevsky intensively develops the apparatus created 
by McCulloch and Pitts in his further papers. In [42] a 
theory of such neural circuits is developed which provide 
for formal logical thinking. Predicate apparatus 
application enables Rashevsky synthesizing huge neural 
networks from single-type fundamental elements of 
McCulloch-Pitts. 

Telson Wei develops another approach to matrix 
representation of a neural net-work [54]. The structure of 
a complete or incomplete neural net is represented here by 
several matrices: the intensity matrix E, the connection 
matrix D, the structural matrix T, the diagonal inverse 
threshold-matrix H, and activity vector a from [26; 27]. 

In their paper [49], Alfonso Shimbel and Anatol 
Rapoport (pioneered in the modeling of parasitism and 
symbiosis, researching cybernetic theory) develop a 
probabilistic approach to the theory of neural nets: neural 
nets are characterized by certain parameters which give 
the probability distributions of different kinds of synaptic 
connections throughout the net. In their further papers, 
they consider steady states in random nets and 
contribution to the probabilistic theory of neural nets: 
randomization of refractory periods and of stimulus 
intervals, facilitation and threshold phenomena, specific 
inhibition and various models for inhibition. 

The last joint article by Pitts and McCulloch, “How 
we know universals the perception of auditory and visual 
forms”, in “Bulletin of Mathematical Biophysics” came 
out in 1947. “Numerous nets, embodied in special nervous 
structures, serve to classify information according to 
useful common characters. In vision they detect the 
equivalence of apparitions related by similarity and 
congruence, like those of a single physical thing seen from 
various places. In audition, they recognize timbre and 
chord, regardless of pitch. The equivalent apparitions in 
all cases share a common figure and define a group of 

transformations that take the equivalents into one another 
but pre-serve the figure invariant. So, for example, the 
group of translations removes a square appearing at one 
place to other places; but the figure of a square it leaves 
invariant. ... We seek general methods for designing 
nervous nets which recognize figures in such a way as to 
produce the same output for every input belonging to the 
figure. We endeavour particularly to find those which fit 
the histology and physiology of the actual structure.” 
[33, pp. 127–128] 

Thus, the models and methods developed by Pitts and 
McCulloch have created a foundation for designing a new 
type of computers – neurocomputers based on human 
brain principles and able to solve tasks of recognizing 
distorted (noisy) images. 

5  Edgar Anderson and his Iris data set 
Edgar Shannon Anderson (November 9, 1897 – June 18, 
1969) was born in Forestville, New York. According to 
George Ledyard Stebbins, from an early age he exhibited 
both superior intelligence and a great interest in plants, 
particularly in cultivating them and watching them grow 
[50, p. 4]. 

He went to Michigan Agricultural College at the age 
of sixteen, just before his seventeenth birthday, knowing 
already that he wanted to be a botanist. After completing 
his degree, he accepted a graduate position at the Bussey 
Institution of Harvard University. After leaving Harvard 
with his doctor’s degree in 1922, Anderson spent nine 
years at the Missouri Botanical Garden, where he was a 
geneticist and Director of the Henry Shaw School of 
Gardening; at the same time he was Assistant Professor, 
later Associate Professor, of Botany at Washington 
University in St. Louis. During this period, he developed 
the beginnings of his highly original and effective 
methods for looking at and recording variation in plant 
populations, as well as his keen interest in the needs and 
progress, both scientific and personal, of students in 
botany. His training in genetics had given him habits of 
precision and mathematical accuracy in ob-serving and 
recording variation in natural populations that were 
entirely foreign to the taxonomists of that period 
[50, p. 5]. 

Through contacts with Jesse Greenman, Curator of the 
Garden Herbarium, he became aware of the enormous 
complexity and extent of the variation present in any large 
plant genus and of the need for understanding the origin 
of species as a major step in evolution. On extensive field 
trips he began to realize that a great amount of genetic 
variation exists within most natural populations of plants. 
This realization led him to the conclusion that “if we are 
to learn anything about the ultimate nature of species we 
must reduce the problem to the simplest terms and study 
a few easily recognized, well differentiated species” 
[6, p. 243]. 

He first selected Iris versicolor, the common blue flag, 
because he believed it to be clearly defined, and it was 
common and easily observed. Initially, this appeared to be 
a mistaken choice, since he soon found that Iris versicolor 
of the taxonomic manuals was actually two species, 
which, after preliminary analysis, he could easily tell 
apart. He then set himself the task of finding out, by a 
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careful analysis of populations throughout their 
geographic areas, how one of these species could have 
evolved from the other. He recorded several 
morphological characters in more than 2,000 individuals 
belonging to 100 populations, data far more extensive 
than those that any botanist had yet obtained on a single 
species. 

In order to enable these data to be easily visualized and 
compared, he constructed the first of his highly original 
and extremely useful series of simplified diagrams or 
ideographs (Fig. 3). By examining them, he reached the 
conclusion that the variation within each of his two 
species was of another order from the differences between 
them; no population of one species could be imagined as 
the beginning of a course of evolution toward the other. 
He therefore concluded that speciation in this example 
was not a continuation of the variation that gave rise to 
differences between populations of one species, and 
started to look for other ways in which it could have taken 
place. The current literature offered a possible 
explanation: hybridization followed by chromosome 
doubling to produce a fertile, stable, true-breeding 
amphidiploid. To apply this concept to Iris, he had to find 
a third species that would provide an alter-nate parent for 
one of those studied. Going to the herbarium, he found it: 
an undescribed variety of Iris setosa, native to Alaska. 

All of his data, including counts of chromosome 
numbers, agreed with the hypothesis that Iris versicolor 
of northeastern North America had arisen as an 
amphiploid, one parent being Iris virginica of the 
Mississippi Valley and the Southeast Coast and the other 
being Iris setosa var. interior of the Yukon Valley, 
Alaska. This was one of the earliest demonstrations that a 
plant species can evolve by hybridization accompanied or 
followed by chromosome doubling. Moreover, it was the 
first one to show that amphiploid or allopolyploid species 
could be used to support hypotheses about previous 
distribution of species. 

Anderson’s research into Iris resulted in all the 
techniques in his later successful work, namely: 
1. careful examination of individual characteristics of 
plants growing in nature and progeny raised in the garden; 
2. reduction of this variation to easily visualized, simple 
terms by means of scatter diagrams and ideographs; 
3. extrapolation from a putative parental species and 
supposed hybrids to reconstruct the alternative parent; 
4. development of testable hypotheses by synthesizing 
data from every possible source. 

The Iris research was Anderson’s chief 
accomplishment during his first period at the Missouri 
Botanical Garden. Toward the end of this period, in 1929-
1930, he received a National Research Fellowship to 
study in England. There he was guided chiefly by 
geneticist J. B. S. Haldane, but he also studied cytology 
under C. D. Darlington and statistics with R. A. Fisher. 
Haldane introduced him to the mutants of Primula 
sinensis, which he analyzed in collaboration with 
Dorothea De Winton. Their joint research was the first 
effort in plant material to relate pleiotropic gene action to 
growth processes. 

In 1931 Anderson went to Harvard, where he stayed 
until 1935, as an arborist at the Arnold Arboretum. He 

returned to the Missouri Botanical Garden in 1935 and 
remained there for the rest of his life. Returning to his 
study of the genus Iris, he and several students analyzed a 
complex variation pattern of populations found in the 
Mississippi delta region [5]. 

Anderson integrated his new experience with past 
memories, popular accounts of his methods of research, 
and his general philosophy of life in the book “Plants, 
Man and Life” [4] published in 1952. It is a combination 
of scientific knowledge, folklore of Latin American and 
other countries, and Anderson’s comments on early 
herbalists and the habits of taxonomists and botany 
professors, plus a bit of philosophy. One of his chief 
contributions to plant science, the pictorialized scatter 
diagram, is presented for the first time in its final form in 
a chapter entitled, characteristically, “How to Measure an 
Avocado” (Fig. 3). 

 

Fig. 3. Anderson’s pictorialized scatter diagram [4, p. 97] 

Anderson’s article of 1936 [3] was his last work 
dedicated to the problem of Iris origin and classification. 
In his introduction to the article, Anderson not only 
expressed his gratitude to his English teachers, but also 
directly indicated that “Dr. Wright, Prof. J. B. S. Haldane, 
and Dr. R. A. Fisher have greatly furthered the final 
analysis of the data, though they are in no way responsible 
for the imperfections of the work or of its presentation.” 
[3, p. 458]. 

In 1936, Sir Ronald Aylmer Fisher published the 
article “The Use of Multiple Measurements in Taxonomic 
Problems” indicating that “Table I shows measurements 
of the flowers of fifty plants each of the two species Iris 
setosa and I. versicolor, found growing together in the 
same colony and measured by Dr E. Anderson, to whom 
I am indebted for the use of the data” [13, p. 179-180]. 
Fisher’s article contained only three references two of 
which to Anderson’s works – that of 1935 [5] and that of 
[3] marked with “(in the Press)”. In 1936, Fisher was not 
the member of the editorial board of “Annals of the 
Missouri Botanical Garden”. The only way of his being 
aware of Anderson’s article [3], was their personal 
correspondence. 
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The set of data used by Fisher and collected by 
Anderson was introduced as “Iris flower data set” (or “Iris 
data set” and “Iris data”). The phrase “Fisher’s Iris data 
set” traditionally expresses Fisher’s role as the founder of 
linear discriminant analysis, but not the authorship of the 
data set. 

Although Anderson never published these data, he 
described [5] how he collected information on irises: “For 
some years I have been studying variation in irises but 
never before have I had the good fortune to meet such 
quantities of material for observation. On the simple 
assumption that if current theories are true, one should be 
able to find evidence of continuing evolution in any group 
of plants, I have been going around the world looking as 
sharply as possible at variation in irises. On any theory of 
evolution the differences between individuals get 
somehow built up, in time, into the differences between 
species. That is to say that by one process or another the 
differences which exist between one plant of Iris 
versicolor and its neighbor are com-pounded into the 
greater difference which distinguishes Iris versicolor 
from Iris setosa canadensis. It is a convenient theory and 
if it is true, we should be able to find the beginnings of 
such a compounding going on in our present day species. 
For that reason I have studied such irises as I could get to 
see, in as great detail as possible, measuring iris standard 
after iris standard and iris fall after iris fall, sitting squat-
legged with record book and ruler in mountain meadows, 
in cypress swamps, on lake beaches, and in English parks. 
The result is still merely a ten year’s harvest of dry 
statistics, only partially winnowed and just beginning to 
shape itself into generalizations which permit of 
summarization and the building of a few new theories to 
test by other means. 

I have found no other opportunity quite like the field 
from De Verte to Trois Pistoles. There for mile after mile 
one could gather irises at will and assemble for 
comparison one hundred full-blown flowers of Iris 
versicolor and of Iris setosa canadensis, each from a 
different plant, but all from the same pasture, and picked 
on the same day and measured at the same time by the 
same person with the same apparatus. The result is, to 
ordinary eyes, a few pages of singularly dry statistics, but 
to the bio-mathematician a juicy morsel quite worth 
looking ten years to find. 

After which rhapsody on the beauty of variation it 
must immediately be emphasized that Iris setosa 
canadensis varies but little in comparison with our other 
native blue flags. Iris versicolor in any New England 
pastures may produce ground colors all the way from 
mauve to blue and with hafts white or greenish or even 
sometimes quite a bright yellow at the juncture with the 
blade. Iris setosa canadensis by contrast is prevailingly 
uniform, its customary blue grey occasionally becoming 
a little lighter or a little darker or even a little more 
towards the purple, and its tiny petals producing odd 
variants in form and pattern, but presenting on the whole 
only a fraction of the variability of Iris versicolor from the 
same pasture. 

The reasons for this uniformity are not far to seek. Its 
lower chromosome number is one, but a discussion of that 
and its bearings on the whole problem would be a treatise 

in itself. More important probably is the fact that by 
geological and biological evidence, Iris setosa canadensis 
is most certainly a remnant, a relict [sic] of what was 
before the glacial period a species widely spread in 
northern North America. 

If we take a map and plot thereon all known 
occurrences of Iris setosa and Iris setosa canadensis, we 
shall find the former growing over a large area at the 
northwest comer of the continent, and the latter clustering 
in a fairly restricted circle about the Gulf of St. Lawrence, 
while in the great intervening stretch of territory, none of 
these irises has been collected. This is a characteristic 
distribution for plants which were almost exterminated 
from eastern North America by the continental ice sheet, 
but while [sic] managed to persist in the unglaciated areas 
about the Gulf of St. Lawrence from which center they 
have later spread. In Alaska the species itself, Iris setosa, 
is apparently quite as variable as our other American 
irises.” 

So, we should pay tribute to Edgar Anderson by 
naming this data set after him – Anderson’s Iris data set. 

6 Model development 
As indicated in [28], the special course “Foundations of 
Mathematical Informatics” final control of knowledge is 
a credit by the presentation of individual education and 
research projects on the artificial neural networks built by 
using CoCalc. Students can be offered to use cloud-based 
spreadsheets, Google Sheets, with the Solver additional 
cloud-based component (add-in) which is similar to 
“Solver” in Excel Online. 

Let us consider the corresponding application method 
by taking a Anderson’s Iris data set to solve the pattern 
classification problem. Anderson’s Iris is composed of 
data on 150 measurements of three Iris species (Fig. 4) – 
Iris setosa, Iris virginica and Iris versicolor) – including 
50 measurements for each species. 

 

Fig. 4. Anderson’s Irises 

There were measured four features (Fig. 5): sepal 
length (SL), sepal width (SW), petal length (PL), and petal 
width (PW). 

To draw a grounded conclusion on the Iris type, we 
build a three-layered neural network with the following 
architecture (Fig. 6): 
- the input layer is a four-dimensional arithmetical vector 
(x1, x2, x3, x4) the components of which are corresponding 
measured features of Anderson’s Irises (SL, SW, PL, PW) 
normalized according to the network activation function; 
- the hidden layer has dimension 9 (the minimal required 
number according to Kolmogorov–Arnold representation 
theorem) and is described by the vector (h1, h2, h3, h4, h5, 
h6, h7, h8, h9); 
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- the output layer is a three-dimensional arithmetical 
vector (y1, y2, y3) the components of which are 
probabilities indicating the correspondence of the data set 
to one of the three Iris types. 

 

Fig. 5. Measurement features of Anderson’s Irises 

 

Fig. 6. Architecture of the neural network to solve the problem 
of Anderson’s Iris classification 

The bias neuron equal to 1 (marked red in Fig. 6) is 
added to the neurons of the input and hidden layers. The 
bias neurons are noted for not having synapses so they 
cannot be located in the output layer. 

Let us first introduce Anderson’s Irises into 
spreadsheets with the following values of cells: A1 is 
Iris Data, A2 is SL, B2 is SW, C2 is PL, D2 is PW, E2 
is Species. 

The table cells A3:E152 include Anderson’s Irises 
(Fig. 7). 

 

Fig. 7. The fragment of the spreadsheet of Anderson’s Irises 

We cannot input the data of the given set into the input 
layer as the value of the four characteristics is beyond the 
range limits [0; 1]. The next step is normalization of 
columns A, B, C and D to meet the given range and coding 
of Iris types from column E. 

Each Iris type is coded by the three-dimensional 
arithmetical vector: for i-Iris (Iris setosa is 1, Iris 
versicolor is 2, Iris virginica is 3) we set the i-th 
component in 1, and the other ones – in 0. To do this, we 
introduce the following values into the cells: G1 is 
encoding, G2 is setosa, H2 is versicolor, I2 is 
virginica, G3 is =if($E3=G$2,1,0). 

Next, we copy the formula from the cell G3 to the 
range G3:I152 and obtain the following model codes for 
the three Iris types: for Iris setosa – (1, 0, 0), for Iris 
virginica – (0, 0, 1) and for Iris versicolor – (0, 1, 0). 

Each column is normalized separately. To perform 
this, we find minimum and maximum values by 
introducing the following values: E154 is min, E155 is 
max, A154 is =min(A3:A152), A155 is 
=max(A3:A152). 

We apply the cells A154:A155 to the range 
B154:D155 and introduce the following values into the 
cells: K1 is normalization, K2 is x1, L2 is x2, M2 is 
x3, N2 is x4, K3 is =(A3-A$154)/(A$155-A$154). 

The latter formula is applied to the range K3:N152. Its 
essence is explained by: 

normalization = ୴ୟ୪୳ୣ – ୫୧୬
୫ୟ୶ – ୫୧୬

. 

This approach results in the minimum value 
normalized to 0, while the maximum one – to 1. 

According to the chosen architecture, we add the bias 
neuron to the four neurons of the input layer by 
introducing its name (x5) into the cell O2 and its value (1) 
into the range O3:O152. On this stage, the input layer is 
formed as x1, x2, x3, x4, x5. 

The next step includes transmission of a signal from 
the input layer to the hidden one of the neural network. 
We denote the weight coefficient of the synapse 
connecting the neuron xi (i = 1, 2, 3, 4, 5) of the input layer 
with the neuron hj (j = 1, 2, ..., 9) of the hidden layer by 
wxh

ij, while the weight coefficient connecting the neuron 
hj of the hidden layer with the neuron yk 
(k = 1, 2, 3) of the input layer is denoted by why

jk . In this 
case, the force of the signal coming to the neuron hj of the 
hidden layer is determined as a scalar product of signal 
values on the input signals and corresponding weight 
coefficients. To determine a signal going further to the 
output layer, we apply the logistic function of activation 
f(S) = 1/(1+e–S), where S is a scalar product. The formulae 
for determining the signals on the hidden and output 
layers will look like: 

.,
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Accordingly, two matrices should be created. The 
matrix wxh of 59 contains weight coefficients connecting 
five neurons of the input layer (the first four contain 
normalized characteristics of Anderson’s Irises, while the 
fifth one is the bias neuron) with the neurons of the hidden 
layer. The matrix why of 103 contains weight coefficients 
connecting ten neurons of the hidden layer (nine of which 
are calculated and the tenth one is the bias neuron) with 
the neurons of the output layer. For the “untaught” neural 
network, initial values of the weight coefficients can be 
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set either randomly or left undetermined or equal to zero. 
To realize the latter, we fill the cells with the following 
values: R1 is wxh, Q2 is input/hidden, R2 is 1, S2 is 
=R2+1, Q3 is 1, Q4 is =Q3+1, R3 is 0, R9 is why, Q10 is 
hidden/output, R10 is 1, S10 is =R10+1, Q11 is 1, 
Q12 is =Q11+1, R11 is 0. 

To create the matrices, we should copy the cells R3 
into the range R3:Z7, R11 – into R11:T20, S2 – into 
T2:Z2, Q4 – into Q5:Q7, S10 – into T10, Q12 – into 
Q13:Q20 (Fig. 8). 

To calculate the scalar product of the vector row of the 
input layer values by the matrix vector-column of the 
weight coefficients why, we should apply the matrix 
multiplication function: AB1 is calculate the 
hidden layer, AB2 is h1, AC2 is h2, AD2 is h3, AE2 
is h4, AF2 is h5, AG2 is h6, AH2 is h7, AI2 is h8, AJ2 is 
h9, AK2 is h10, AB3 is 
=1/(1+exp(-mmult($K3:$O3,R$3:R$7))), AK3 
is 1. 

 

Fig. 8. The fragment of the spreadsheet after coding and 
normalization of the output data and creation of the matrices of 
the weight coefficients 

Next, we copy the cell AK3 into the range 
AK4:AK152, while AB3 – into AB3:AJ152. 

Considering the fact that all the matrix elements of the 
weight coefficients wxh equal to zero, after duplicating the 
formulae, the calculated elements of the hidden layer will 
be equal to 0.5. 

In the same way, we calculate the output layer 
elements: AM1 is calculate the output layer, 
AM2 is y1, AN2 is y2, AO2 is y3, AM3 is 
=1/(1+exp(-mmult($AB3:$AK3,R$11:R$20))). 

Next, we copy the cell AM3 to the range AM3:AO152 
(Fig. 9). 

 

Fig. 9. The fragment of the spreadsheet of calculating the 
hidden and output layers with initial values of the weight 
coefficients 

Neural network training is performed by varying 
weight coefficients so that with each training step the 
difference between the calculated values of the output 
layer and the desired (reference ones) reduces. To solve 
the problem, the three-dimensional vectors resulted from 
coding of the three Iris types are reference. 

To find the difference between the calculated and the 
reference output vectors we apply the Euclidean distance: 
AQ2 is distance, AR2 is sum of distances, AQ3 
is =sqrt((AM3-G3)^2+(AN3-H3)^2+(AO3-
I3)^2), AR3 is =sum(AQ3:AQ152). 

Next, we copy the cell AQ3 to the range AQ4:AQ152. 
The cell AR3 contains general deviation of the calculated 
output vectors from the reference ones. 

Under this approach, the neural network training can 
be treated as an optimization problem in which the target 
function (the sum of distances in the cell AR3) will be 
minimized by varying the matrix weight coefficients wxh 
(the range R3:Z7) and why (the range R11:T20). To solve 
this problem, application of cloud-based spreadsheets 
(Google Sheets) is not enough and it is necessary to install 
an additional cloud-based component (add-in) Solver. 

Adjustment of the add-in Solver to solve the set goal: 
the target function (Set Objective) is minimized (To: Min) 
by changing the values (By Changing) of the matrix 
weight coefficients in the range (Subject To) from –10 tо 
+10 by one of the optimization methods (Solving 
Method). 

To reduce the total distances, the actions with Solver 
can be done repeatedly as it is expedient to experiment 
with combination of various optimization methods by 
changing the variation limits of the weight coefficients. It 
is not necessary to try to reduce the value of the total 
distances to zero as this can be a greater (quite smaller) 
value (Fig. 10). 

 

Fig. 10. Optimization results 

On the assumption of the chosen coding method, the 
output vector actually contains three probabilities: yi 
denotes the probability of the given sample being the 
i-type Iris, where i = 1 for Iris setosa, 2 for Iris versicolor 
and 3 for Iris virginica. Then, to find out which Iris type 
describes the input vector (SL, SW, PL, PW), the most 
probable component should be determined. 

To do this, we fill the cells in the following way: AT2 
is Calculated Iris species, AT3 is =if(max 
(AM3:AO3)=AM3,$G$2,if(max(AM3:AO3)=AN3,$
H$2, $I$2)), AU3 is =if(AT3=E3, "right!", 
"wrong"). 

Next, the range AT3:AU3 is copied to the range 
AT4:AU152. 

The obtained result enables us to visualize pattern 
recognition simulated in spread-sheets. The built model 
will be considered relevant in all 150 cases, the column 
AU contains the value "right!". 

To check the limits of the built model application, we 
try to input the vector not coinciding with any reference 
input vector. For this, we copy the table row 152 to 158 
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and delete the content of the cells E158:I158, AQ158, 
AU158. We introduce averaged values borrowed from the 
description of Iris versicolor in the article by Anderson 
[33, p. 463]: 5.50, 2.75, 3.50 and 1.25. The reference 
values x1 = 0.3333, x2 = 0.3125, x3 = 0.4237, x4 = 0.4792 
are conveyed to the input layer, while on the hidden layer 
there are calculated h1 – h9 and the values of the output 
layer y1 = 0.0000, y2 = 1.0000, y3 = 0.0000. As the 
maximum value of the output layer 1.0000 corresponds to 
the other Iris type, we can conclude that Iris versicolor is 
identified. 

7 Conclusions 
1. Extensive application of artificial intelligence in 
everyday life calls for students’ early acquaintance with 
its models and methods including neural network-based 
while teaching informatics at secondary schools. It 
conditions the need for developing training methods of 
computer simulation of neural networks in the general-
purpose simulation environment, i.e. spreadsheets. 
2. Basic solutions of the problem of computer simulation 
training of neural networks in the spreadsheet 
environment include: 1) joint application of spreadsheets 
and network simulation tools; 2) application of third-party 
add-ins to spreadsheet processors; 3) macros 
development using embedded languages of spreadsheet 
processors; 4) application of standard spreadsheet add-ins 
for non-linear optimization; 5) creation of neural 
networks in the spreadsheet environment without add-ins 
and macros. 
3. Neural network simulation competences should be 
formed through mastering models based on the historical 
and genetic approach. The review of papers on 
computational neuroscience of its early period allows 
determining three groups of models, which are helpful for 
developing corresponding methods: the continuous two-
factor model of Rashevsky, the discrete model of 
McCulloch and Pitts, and the discrete-continuous models 
of Householder and Landahl. 
4. Edgar Anderson appeared to be not a simple botanist 
whose data were the basis for Fisher’s known method. 
Anderson’s Irises resulted from his long experience of 
working out relevant models to describe changes in 
specific populations by means of a limited number of 
characteristics. Yet, Anderson had also coped with the 
opposite problem of building simple multi-dimensional 
data interpretation 40 years before Chernoff faces 
appeared [9]. 
5. The described methods of applying cloud-based 
spreadsheets as a tools for training mathematical 
informatics can enable solution of all basic problems of 
neural net-work simulation. The only limitation is not so 
much the volume of a spreadsheet as the memory space 
and the speed of the device processing it. In the special 
course projects if the limitation is overcome, this becomes 
a stimulus for replacing the simulation environment by a 
more relevant one [52]. 
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