Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3643
Назва: Ecological and Geological Determination of the Initial Pedogenesis on Devastated Lands in the Kryvyi Rih Iron Mining & Metallurgical District (Ukraine)
Інші назви: Екологічна та геологічна зумовленість ініціального педогенезу на девастованих землях Криворізького гірничо-металургійного регіону (Україна)
Автори: Савосько, Василь Миколайович
Ключові слова: devastated land
initial pedogenesis
technosol
embryozems
Kryvyi Rih Basin
девастовані землі
ініціальний педогенез
техносол
ембріозем
Криворіжжя
Дата публікації: 2019
Бібліографічний опис: Savosko, V. M., Lykholat, Y. V., Bielyk, Yu. V., Lykholat, T. Y. (2019). Ecological and Geological Determination of the Initial Pedogenesis on Devastated Lands in the Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology, 28 (4), 738-746. DOI: 10.15421/111969
Короткий огляд (реферат): In our time, a very urgent problem is the cessation of negative impacts on the environment and the return to the practical use of the territories of devastated lands. In this regard, it is important to find out the basic laws of primary soil formation in the area of these man-made neoplasms. The initial soil formation conditions were analyzed on 19 experimental sites which represent the main varieties of devastated land in the Kryvyi Rih Iron Mining and Metallurgical District (Central Ukraine): (i) waste rock dumps of old iron mines (old name “Forges”), (ii) tailing storage facility of underground iron mines, (iii) waste rock dumps of the Iron Ore Mining and Dressing Plant, (iv) waste rock dumps of the Granite Quarry Plant. It was established that on the devastated lands in Kryvyi Rih District, the initial soil formation occurs in very difficult conditions. Therefore, over 25- 100 years only very primitive soils were formed. The following features are inherent to them: (1) primitive soil profile (thickness 10-100 mm), (2) low levels of soil organic substance content (9.5-11.5 %), (3) alkaline indicators of the soil solution (pHH2O – 8.08-8.92, pHKCl – 7.42-8.23), (4) low levels of cation exchange capacity (6.34-8.47 mMol /100 g). By results of correlation calculations, among the factors of soil formation time (duration of soil formation) and input of plant ash elements’ fall are characterized by the maximum number of statistically significant correlation coefficients and their numerical values. In terms of chemical composition of the technosol, the values of organic matter content and exchangeable acidity (pHKCl) were the most predictable soil formation factors. Generally physical / chemical characteristics of geological rocks (as parent material) and time were the two most important factors in determining the initial pedogenesis on devastated lands in the Kryvyi Rih Iron Mining & Metallurgical District (Ukraine).
Опис: Antrop, M. (2006). Sustainable landscapes: contradiction, fiction or utopia? Landscape and Urban Planning, 75, 187–197. Aronson, J., & Alexander, S. (2013). Ecosystem Restoration is Now a Global Priority: Time to Roll up our Sleeves. Restoration Ecology, 21, 3, 293-296. DOI: 10.1111/rec.12011. Berger, A., Brown, C., Kousky, C., & Zeckhauser, R. (2011). The Challenge of Degraded Environments: How Common Biases Impair Effective Policy. Risk Analyses, 31 (9), DOI: 10.1111/j.1539– 6924.2010.01477.x Breemen, N. van, & Buurman, P. (2003). Soil Formation. Kluwer Academic Publishers, New York. Charzynski, P. (ed.), P. Hulisz (ed.), & R. Bednarek (ed). (2013). Technogenic soils of Poland. Polish Society of Soil Science, Torun. Cortina-Segarra, J., Decleer, K., & Kollmann, J. (2016). Speed restoration of EU ecosystems. Nature, 535, 231. Demidov, A. A., Kobets A. S., Gritsan Yu. I., & Zhukov A. V. (2013). Prostranstvennaya agroekologiya i rekultivatsiya zemel [Spatial agroecology and reclamation of land]. Dnipropetrovsk, Publishing House «Svidler AL». (in Russian). DSTU-ISO 10381-8:2006. Soil quality, Sampling, Part 8 Guidance on sampling of stockpiles. DSTU-ISO 10390:2001. Soil quality, Determination of pH. DSTU-ISO 10694-2001. Soil quality, Determination of organic and total carbon after dry combustion (elementary analysis). DSTU-ISO 11260:2001. Soil quality - Determination of exchangeable acidity in barium chloride extracts (ISO 14254:2001). DSTU-ISO 11664:2006. Soil quality, Pretreatment o samples for physic-chemical analyses. Hlava, J., Hlavová, A., Hakl, J., & Fer, M. (2015). Earthworm responses to different reclamation processes in post opencast mining lands during succession. Environ Monitoring Assessment, 187, 4108. DOI: 10.1007/s10661-014-4108-8. Jenny, H. (1994). Factors of soil formation a System of Quantitative Pedology. Dover publications, New York. Kumar, B. M. (2013). Mining waste contaminated lands: an uphill battle for improving crop productivity. Journal of Degraded and Mining Lands Management, 1, 1, 43-50. Lakin, G. F. (1990). Biometriya [Biometrics]. Moscow, Vyisshaya shkola. (in Russian). Lykholat, Y., Alekseeva, A., Khromykh, N., Ivanko, I., Kharytonov, M., & Kovalenko, I. (2016a). Assessment and prediction of viability and metabolic activity of Tilia platyphyllos in arid steppe climate of Ukraine. Agriculture and Forestry. Podgorica, 62 (3), 65–71. Lykholat, Y., Khromyk, N., Ivanko, I., Kovalenko, I., Shupranova, L., & Kharytonov, M. (2016b). Metabolic responses of steppe forest trees to altitude associated local environmental changes. Agriculture & Forestry. Podgorica, 62 (2), 163– 171. Malahov, I. N. (2009). Novaya geologicheskaya sila (Geologicheskaya sreda antropogennoy ekosistemyi) [New geological force (Geological environment of anthropogenic ecosystem)]. Kryvyi Rih, Publishing House «Ukraine» (in Russian). Malaxov, I. M. (2003). Texnohenez u heolohičnomu seredovyšči [Technogenesis in the geological environment]. Kryvyj Rih: Oktant-Print. (in Ukrainian). Manyuk, V. V., (2016). Geological heritage as an integral part of the Nature Reserve Lands of Kharkiv oblast Dnipropetrovsk University Bulletin. Series Geology, Geography, 24 (1), 71–82. DOI: 10.15421/111611. (in Ukrainian). Mazur, A. Ye., Kucherevskyi, V. V., Shol’, H. N., Baranets, M. O., Sirenko, T. V., & Krasnoshtan, O. V. (2015). Biotekhnolohiia rekultyvatsii zalizorudnykh vidvaliv shliakhom stvorennia stiikykh travianystykh roslynnykh uhrupovan [Biotechnology of iron-ore dump recultivation by creation of stable plant communities]. Nauka ta inovatsii [Science and Innovations], 11 (4), 41— 52. DOI:10.15407/scin11.04.041. (in Ukrainian). MCdonald, J.H. (2014). Handbook of biolological statistics. Sparky house publishing, Baltimore. Resulović, H., & Čustović, H. (2007). Technosols – Development, Classification and Use. Agriculturae Conspectus Scientificus, 72, 1, 13- 16. Savosko, V. M. (2010). Genezis i morfologiya primitivnyih pochv tehnogennyih landshaftov Krivbassa [Genesis and morphology of the primitive soils in technological landscapes at Kryvbas]. Pytannia bioindykatsii ta ekolohii [Bioindication and Ecology Questions], 15 (2), 152–162. (in Russian). Savosko, V. M., Nevyadomsky, M. A., & Kudriava, P. Y. (2010). Fiziko-himicheskie svoystva substratov shahtnyih hvostohranilisch Krivbassa [The physical and chemical properties of substrates at mine tailing ponds at kryvbas]. Pytannia bioindykatsii ta ekolohii [Bioindication and Ecology Questions], 15 (1), 88–89. (in Russian). Savosko, V. M. (2011a). Melioraciya ta fitorekultyvaciya zemel [Land melioration and phtoyreclamation]. Kryvyj Rih, Dionis. (in Ukrainian). Savosko, V. M. (2011b) Otsinka fitotoksychnosti substrativ shakhtnykh khvostoskhovyshch Kryvorizhzhia [The estimation of phytotoxicity of substrate at mine tailing ponds in the Kryvyi Rih iron-ore region]. Promyslova botanika [Industrial Botany], 11, С. 19–25. (in Ukrainian). Savosko, V. M., & Tovstolyak, N. V. (2017). Ecological conditions of garden and park territories of former iron mines (Kryvyi Rih Basin, Ukraine). Ukrainian Journal of Ecology, 7 (4), 12–17. (in Ukrainian). Savosko, V., Lykholat, Yu., Domshyna, K., & Lykholat, T. (2018). Ekolohichna ta heolohichna zumovlenist poshyrennia derev i chaharnykiv na devastovanykh zemliakh Kryvorizhzhia [Ecological and geological determination of dispersal of trees and shrubs on the devastated lands in Kryvorizhya]. Journal of Geology, Geography and Geoecology, 27 (1), 116-130. DOI: 10.15421/111837. (in Ukraine). Sere, G., Schwartz, Ch., Ouvrard, S., Renat, J.-Ch., Watteau, F., Villemin, G., & Morel, J.L. (2010). Early pedogenic evolution of constructed Technosols. Journal of Soils and Sediments, 10, 1246–1254. DOI 10.1007/s11368-010-0206-6. Shvaiko, V. M., & Manyuk, V. V. (2017). The Ecological Network of the subregional level of Dnipropetrovsk region (Pokrovsky and Mezhyvsky districts). Dnipropetrovsk University Bulletin. Series: Geology, Geography. 25 (1), 2017, 119-130. DOI: 10.15421/111. (in Ukraine). Sobocka, J. (2008). Position of technosols in the Slovak soil classification system and their correlation. Gruntoznavstvo [Soil science], 9, 3–4, 177-182. Tereschenko, V. F. (1992). Ekologicheskie printsipyi i priemyi podbora drevesnyih i kustarnikovyih porod dlya rekultivatsii skalnyih otvalov Krivbassa [Ecological principles and methods of selection of wood and shrub species for recultivation of rock dumps in Kryvbass]. Abstract of Thesis for Candidate of Sciences degree in Biology. Dnipropetrovsk, Dnipropetrovsk State University, (in Russian). World reference base for soil resources (2015). International soil classification system for naming soils and creating legends for soil maps. Food and agriculture organization of the United Nations, Rome.
URI (Уніфікований ідентифікатор ресурсу): http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3643
https://doi.org/10.31812/123456789/3643
Розташовується у зібраннях:Кафедра ботаніки та екології

Файли цього матеріалу:
Файл Опис РозмірФормат 
2019 Савосько та ін. initial pedogenesis on devastated lands WofS.pdf1.48 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.