
Using Unity to Teach Game Development

Vladyslav S. Kuznetsov1, Mykhailo V. Moiseienko1 a, Natalia V. Moiseienko1 b,
Bohdan A. Rostalny1 and Arnold E. Kiv2 c

1Kryvyi Rih State Pedagogical University, 54 Gagarin Ave., Kryvyi Rih, 50086, Ukraine
2Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva, 8410501, Israel

Keywords: Computer Science, Education, Computer Game Development, Unity Engine, Software Engineering.

Abstract: The article gives an overview of issues arising in connection with the organization and conduct of the course
“Computer game development” in the master’s program 014.09 Secondary education (Informatics). The study
of the experience of similar courses in other educational institutions does not give an idea of what conditions
are the best for conducting it, because “Computer game development” is mainly present in the curriculum of
the Software Engineering specialty and is not limited to one course. The game development course is described
in terms of content, software and teaching methods. This course, which was attended by 40 students in three
years, was evaluated in the light of the approach proposed by A. D. Ritzhaupt and based on the students’
opinion. As a result of this research, it was concluded that a course in video game development could be based
on the Unity Engine, as it has a small entry threshold, free for academic purposes, a crossplatform, real game
engine, common in the gaming industry. A team strategy for this course is also effective.

1 INTRODUCTION

The software industry is a dynamic and market-
oriented industry (Vakaliuk et al., 2020b). Along with
the film industry, video games are one of the most
interesting and popular applications of information
technology (Haranin and Moiseienko, 2018; Katsko
and Moiseienko, 2018).

Gamesindustry.biz journalists, along with analysts
from Newzoo, UKIE, Sensor Tower, IHS Markit, ICO
Partners and Fancensus, published a large infographic
on the state of the game industry in 2020 (figure 1).
It implies that computer games occupy a significant
segment of the software market.

Educational institutions that train software engi-
neers include game development as a set of relevant
subjects in the curriculum. The reasons for their in-
clusion are diverse and include, inter alia, improving
the effectiveness of the curricula (Barnes et al., 2007;
Claypool and Claypool, 2005; Morrison and Preston,
2009; Roden and LeGrand, 2013; Sung, 2009), in-
creasing the competitiveness of graduates in the mod-
ern labour market (Haranin et al., 2017; Vakaliuk

a https://orcid.org/0000-0003-4401-0297
b https://orcid.org/0000-0003-0789-0272
c https://orcid.org/0000-0002-0991-2343

Figure 1: Global Games Market Value 2020 (Batchelor,
2020).

et al., 2020a), learning team work (Brown et al., 2009;

506
Kuznetsov, V., Moiseienko, M., Moiseienko, N., Rostalny, B. and Kiv, A.
Using Unity to Teach Game Development.
DOI: 10.5220/0010933400003364
In Proceedings of the 1st Symposium on Advances in Educational Technology (AET 2020) - Volume 2, pages 506-515
ISBN: 978-989-758-558-6
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Rankin et al., 2008) and project management (Barnes
et al., 2007; Claypool and Claypool, 2005).

Despite this, many higher education institutions
carefully include such courses for a variety of reasons,
including the need to create games of some interdis-
ciplinary skills, time constraints, lack of interest and
experience among teachers in teaching games or the
view that game development is not serious (Becker
and Parker, 2007; Martin and Smith, 2002).

As teachers of Computer Science at Pedagogical
University, we consider the inclusion of a variation
course of computer game development in the curricu-
lum of Masters 014.09 Secondary Education (Infor-
matics) as a way to increase the level of motivation,
engagement and professional pleasure for students.

The purpose of this article is to give an idea of
the creation of a separate game development course,
an overview of the methodology and tools used in its
construction and the conclusions drawn so that teach-
ers without experience, all of which have set such a
course, have been able to avoid unnecessary waste
of time. We describe our experience in creating an
individual game development course using the Unity
Game Engine (Unity Technologies, 2021). The aim
of this course is to familiarize students with the de-
velopment of games using the software available in
industry. We focus on problem solving, project plan-
ning, SDK work, and teamwork, and see this course
as a way to entertain and motivate students.

2 BACKGROUND

The first task of the game development course was to
select an approach. Defining the content, goals and
objectives of game development is an important step,
especially in the light of limited material and time re-
sources.

A review of publications on the subject shows that
the implementation of training programmes on game
development is quite diverse. It varies from individual
courses (Jones, 2000; Parberry et al., 2005; Sweedyk
and Keller, 2005) and the inclusion of relevant sec-
tions in the traditional computer science program
(Coleman et al., 2005) before the course sequence
(Clark et al., 2007; Fachada and Códices, 2020; Par-
berry et al., 2006; Rocco and Yoder, 2007; Prokhorov
et al., 2021). Content of individual courses from the
use of engines developed for training (Gamemaker
(Claypool and Claypool, 2005), RPG Maker (Barnes
et al., 2007), Alice (Werner et al., 2012)), develop-
ment of own game engines (Labyrinth (Distasio and
Way, 2007; Shultz, 2004), CAGE (Vanhatupa, 2011)),
technical design (Parberry et al., 2006), Flash (Estey

et al., 2010) to a complete game development training
course covering all aspects of the game (Jones, 2000;
Martin and Smith, 2002).

The idea of developing a proprietary engine seems
tempting at first, but, in experience, does not pay for
itself by the time it takes, and eventually students will
never see it again after the course (Dickson, 2015).
The real game engine should simplify and speed up
the development process and allow students to create
interesting games in a short period of time. The prob-
lem of finding the most suitable game engine for this
course is not very simple, and there are different opin-
ions on this issue from the XNA Game Studio library
to Unity and Unreal (Dickson, 2015; Dickson et al.,
2017; Unreal Engine, 2021; Harris, 2011; Linhoff and
Settle, 2008; Parberry et al., 2005; Peng, 2015). Dick-
son (Dickson, 2015) offers to use the Unity game en-
gine (Unity Technologies, 2021) to teach game de-
velopment. Given its widespread use in the industry
(de Macedo and Rodrigues, 2011; Toftedahl and En-
gström, 2019) and even for teaching game develop-
ment in the middle school (Comber et al., 2019), this
seems logical.

There are also several important CS sections di-
rectly used in the development of computer games:
the basics of physics, multimedia, network basics,
computer graphics, and the basics of game artificial
intelligence (Ahlquist and Novak, 2007; Millington,
2019; Yannakakis and Togelius, 2018).

Game design usually refers to the design of
the game and focuses on story, mechanics, charac-
ter modelling, environment, process content genera-
tion, etc., which is enough material to take a whole
semester without going into too much detail. There
are many textbooks covering these broad topics, such
as (Adams, 2013; Ahlquist and Novak, 2007; Saulter,
2007; Bond, 2014). These areas are compulsory for
the course.

3 SELECTING THE SOFTWARE

Once the approach to the gaming course was defined,
the next question we faced was what tools to use to
create games.

More recently, developers have made widely
available many powerful game engines and devel-
opment environments that provide functionality for
video game development. An overview of some of
the best known is presented below.

Godot Engine (Bradfield, 2018; Manzur and Mar-
ques, 2018)

Cost and Licensing: Completely free and open
source under the permissive MIT license.

Using Unity to Teach Game Development

507

System Requirements (minimum): Memory: 4 GB,
Graphics Card: NVIDIA GeForce 6200, CPU: Intel
Core 2 Duo E8400, OS: Windows 7.

Platforms: Linux, Windows, OS X, Wii, Nintendo
3DS, PlayStation 3, PS Vita, Android, iOS, BBX,
web-games with asm.js, NativeClient.

Overview and Features: Godot Engine is a
feature-packed, cross-platform game engine to create
2D and 3D games from a unified interface. It pro-
vides a comprehensive set of common tools, so users
can focus on making games without having to rein-
vent the wheel. Games can be exported in one click
to a number of platforms, including the major desk-
top platforms (Linux, macOS, Windows) as well as
mobile (Android, iOS) and web-based (HTML5) plat-
forms.

Unity Engine (Unity Technologies, 2021)
Cost and Licensing: Personal Free version (your

project revenue or funding cannot exceed $100,000 a
year), Unity Pro package $125 per month (includes
an impressive amount of services not included in the
free version).

System Requirements (minimum): Graphics Card:
DX10, DX11, and DX12-capable GPUs, CPU: X64
architecture with SSE2 instruction set support, Win-
dows 7 (SP1+) and Windows 10, 64-bit versions only.

Platforms: Android, iOS, Windows Phone 8,
BlackBerry, PS3, Xbox360, Wii U and web-browsers.

Overview: Unity is a cross-platform game engine.
The engine can be used to create 2D/3D, virtual real-
ity, and augmented reality games, as well as simula-
tions and other experiences (Axon, 2016; Takahashi,
2018). The engine has been adopted by industries out-
side video gaming, such as film, automotive, architec-
ture, engineering and construction.

Features: Creating and Destroying GameOb-
jects, Access the Components, Events for GameOb-
ject, Dealing with Vector Variables and Timing Vari-
ables, Physics Oriented Events, Coroutine and Return
Types.

Unreal Engin (Unreal Engine, 2021)
Cost and Licensing: Free (5% royalty on gross

revenue more than $1,000,000).
System Requirements (minimum): CPU: Quad-

core Intel or AMD processor, 2.5 GHz or faster,
Graphics Card: NVIDIA GeForce 470 GTX or AMD
Radeon 6870 HD series card or higher, RAM: 8 GB
Windows 7 64-bit or Mac OS X 10.9.2 or later.

Platforms: iOS, Android, Windows Phone 8,
Xbox360, PS 3, PlayStation Vita, Wii U.

Overview and Features: Unreal Engine is a com-
plete suite of development tools for anyone working
with real-time technology. From design visualiza-
tions and cinematic experiences to high-quality games

across PC, console, mobile, VR, and AR, Unreal En-
gine gives you everything you need to start, ship,
grow, and stand out from the crowd.

XNA Game Studio (Harris, 2011; Linhoff and Set-
tle, 2008; Miles, 2011)

Cost and Licensing: Free download from Mi-
crosoft site.

System Requirements (minimum): Graphics Card
Shader Model 1.1 support, DirectX 9.0 support, Op-
erating System: Windows Vista SP2, Windows 7 (All
editions except Starter).

Platforms: Windows, Xbox 360, Zune.
Overview and Features: XNA Game Studio 2.0 –

application framework, integrated development en-
vironment. Features: Game component models,
New framework library designed to support Microsoft
Windows, XBOX 360, and Zune game development,
Integration with XNA Framework Content Pipeline.

From an analysis of the capabilities of the video
game development tools described, it can be con-
cluded that they are all quite powerful. The choice
of a specific tool is determined by the characteristics
of the project being developed. Their use for educa-
tional purposes is almost equal, although the choice
may be influenced by the size of the proposed course.

The second parameter to choose the instrument
was its cost. All the tools described are free of charge
for educational purposes and thus meet our needs.

The third, perhaps most essential, requirement is
compliance with the minimum system requirements
of the equipment and associated software. State ed-
ucational institutions are at a disadvantage in this re-
spect. Therefore, for the first version of the course
“Computer game development” in our university was
chosen Microsoft XNA Game Studio, which has a
narrower range of possibilities.

We assumed that the experience of our students
in C/C++ and C# programming would allow them
to easily learn XNA. However, we were wrong. By
the end of the course, many of them were halfway to
the games. The greatest success was achieved by the
group of students who developed the Tower Defence
class game, but it was completed as part of the bache-
lor’s qualification work.

The problem with this approach is that in order for
students to feel the process of developing games, they
need an environment that they can easily use to create
games. The focus of the course was to make the game
good, not just work at all. We wanted our students to
have experience working with a real engine, real skills
if they decided to develop games.

The situation improved after the computers at our
university were upgraded. We were able to work with
a serious game engine. We decided to use the Unity

AET 2020 - Symposium on Advances in Educational Technology

508

Table 1: Course part 1. Basics of work in Unity.

Topics Duration,
hours

Course materials Deliverables

1. Introduction to
Unity

3 Unity features. Examples of games created on Unity. Unity instal-
lation. The difference between 2d and 3d design. Overview of the
main elements of the scene: Camera, GameObject, Direction Light.
Moving the scene. Camera object. Location of objects on a 3d scene.

Laboratory
work 1

2. Textures, mate-
rials and elements
of the scene

3 Adding new textures to the project. Creation and use of materials.
Shaders and their use. Work with aggregated characters and their com-
ponents. Creating a Terrain. Terrain Landscape Editor. Trees, grass
and surroundings. Placement of a player on Terrain.

Laboratory
work 2

3. Scripts and ob-
ject movement

3 Install Visual Studio Plug-in for Unity3d. Creating scripts. Apply a
script to an object on the stage. The structure of the automatically
generated script. Creating a character movement using a script.

Laboratory
work 3

4. Player man-
agement

3 Using the Asset store. Download unitypackage. Use ready-made uni-
typackage. Creating unitypackage. The structure of projects created
by other developers. Use of ready-made asset. Character Controller
and its application. Move the object with the keyboard. Dynamic ob-
ject creation.

Laboratory
work 4

5. User interface 3 User interface and its application. Examples of basic controls. Bind-
ings and orientation of controls relative to the working area of the
screen. Creating elementary events. Customize Canvas to different
screen resolution properties

Laboratory
work 5

6. Animation 3 Using ready-made character animations. Create your own animation.
Editing curves. Structure and main properties of the Animation com-
ponent. Animator component

Laboratory
work 6

Table 2: Course part 2. Game development based on Unity.

Topics Duration,
hours

Course materials Deliverables

1. Game Devel-
opment Basics

1 Game development life-cycle. Game terminology. Overview of game
industry

Game Con-
cept plan

2. Creating a
character

3 Uploading models to the project. Features of creating game characters.
Customize avatars for models that use humanoid animations. Working
with the Animator component. Animator controller settings. Retarget-
ing of humanoid animated clips.

Characters
modelling
and anima-
tion

3. Finding a way 3 Creating a game scene. Navigation grid settings. Add and adjust ob-
stacles. Implementation of the movement of the character on the nav-
igation grid.

Group
projects
element

4. Inverse kine-
matics

5 Animation settings. Attaching skeletal parts to objects. Creating a
script to work with inverse kinematics. Fixation of skeleton points.
LineRender component.

Group
projects
element

5. Characters not
controlled by the
player

6 Creating a slider and stylizing it. Move the coordinates of the slider
to the position above the target. Creating goal health scripts. Using
Raycast.

Group
projects
element

6. Construction
of game levels

12 Creating a game level. Overlay post effects on the main camera. Set
up bots to search for enemies. Game level layout. Creating multiple
teams. Configuration and error correction. Possibility of application
of scattering of bullets at shooting.

Final Game

Engine because it has a less steep learning curve than
Unreal. It can be used to develop games for any
platform, including the Web, for real games, not just
training games for learning. Unity scripting can be

done in C# or JavaScript, with which our students
have already had experience.

Using Unity to Teach Game Development

509

Table 3: Useful course element percentages, mean, and standard deviation.

Useful elements 1 2 3 4 5 M SD
The way in which the material was approached 0 5 40 32,5 22,5 3,73 0,88
The pace at which we worked 2,5 10 45 30 12,5 3,4 0,93
Working with peers inside and outside of class 0 7,5 22,5 42,5 27,5 3,9 0,9
Viber discussion group 2,5 7,5 32,5 40 17,5 3,63 0,95
Teamwork in labs 0 2,5 15 57,5 25 4,05 0,71
The presentation of the final group project 0 10 20 45 25 3,85 0,92
The hands-on labs activities 0 5 25 32,5 37,5 4,03 0,92

Table 4: Student learning gains percentages, and mean.

Student gains from course 1 2 3 4 5 M SD
Understanding the main concepts in game development 0 5 25 42,5 27,5 3,93 0,86
Understanding the game development process 2,5 2,5 10 60 25 4,03 0,83
Understanding Unity Engine using in game development 0 5 15 37,5 42,5 4,18 0,87
Ability to think through a problems in game development 0 1 10 20 9 3,93 0,76
Confidence in your ability to work in game development 0 5 25 47,5 22,5 3,88 0,82
Feeling comfortable with complex game development 0 2,5 35 45 17,5 3,78 0,77

4 ORGANIZATION OF THE
COURSE

We wanted to build the course in such a way that stu-
dents could learn the basics of Unity quickly enough
and focus on creating the game for most of the
semester.

After studying Paul E. Dickson’s works (Dickson,
2015; Dickson et al., 2017), our first thought was to
build a course based on a book with examples that
could guide both us and our students, for example,
Unity 3.x Game Development Essentials (Goldstone,
2009). One game is built throughout the book, each
chapter introduces a new concept and aspect of the
game. All examples of code are written in JavaScript
and C#. This book quickly gives an idea of colliders,
particle systems, etc. for anyone with no experience
in game development. The work on the book provides
enough information to study the basics of Unity.

One of the problems is the rapid development
of Unity and the need to find relevant materials for
work. Unity has an active online community that
helps to find textbooks to cope with the new features
and changes in Unity and could base the course on
one of the online textbook series. However, since the
duration of the course was only one semester, it was
necessary to develop a manual sufficient to carry out
the laboratory tasks in order to use the books only as
an additional source of information.

Our goal in this course is to give students a sense
of the game development process with a focus on
project management, teamwork, and problem solv-
ing. The first part of the course focuses on teaching

students to use Unity, and the second part focuses on
developing real play by groups of students. Classes
were held for 3 hours per week: 1 hour of lectures
and 2 hours of laboratory work. The basic structure
of the course is shown in table 1, 2.

The method that we used in the first part of the
course, to organize the study of Unity students, was
to combine work on the assignments in the classroom
with the performance of additional creative tasks by
ourselves. In each work, students had to understand
in detail what had been done in the classroom in order
to determine how to complete the extra assignment.
During the first part of the semester, students sought
to learn how to solve various problems with Unity be-
fore they began working on their final game projects
that required these skills. During this work, students
built a basic game in which the player could control
the movement and actions of the character in their en-
vironment.

5 RESULTS

It’s hard to measure success when students are build-
ing different games. By calling the game playable,
we mean that the students have created a mechanic
for the game (possibly with minor errors), combined
the art assets with the mechanics and made some in-
troduction (history, list of game items) that enters into
the game. In order to evaluate the results of our course
“Computer game development” we used some param-
eters offered by Ritzhaupt (Ritzhaupt, 2009) to evalu-
ate its such course.

AET 2020 - Symposium on Advances in Educational Technology

510

Figure 2: RPG game.

Figure 3: Quest game.

Using Unity to Teach Game Development

511

Figure 4: Logical game.

Figure 5: Action game.

5.1 Usefulness of Course Elements for
Students

For studying the elements of the course that proved
successful, we asked the students to indicate which
elements of the course were useful for learning
in the range from 1 – “not useful” to 5 – “very

useful” (table 3). Of particular interest are the
highly rated elements: teamwork in labs (M = 4.05;
SD = 0.71), working with peers inside and outside
of class (M = 3.9; SD = 0.9), and the hands-on labs
activities (M = 4.03; SD = 0.92). These results un-
derline the importance of sufficient work in the com-
puter laboratory and cooperative training in the game
development course.

AET 2020 - Symposium on Advances in Educational Technology

512

5.2 Student Assessment of Gains

Students were asked to evaluate their post-graduate
achievements in a number of areas related to the de-
velopment of games on a scale of 1 to 5 (table 4).
The results showed that they made the most progress
in understanding the game’s development (M = 4.03;
SD = 0.83) and the ability to use the Unity Engine
(M = 4.18; SD = 0.87). In all other areas, progress
has also been above average.

5.3 Final Project Game

In the second part of the course, students worked in
groups (3–4) to create final game projects. We allow
students to decide for themselves which games they
want to develop and how to split into groups. Each
group decided who would play what roles and what
they would need to do to finish the game. Lectures on
this part of the course covered a wide range of topics.
Some specific aspects of game development that stu-
dents are likely to need were discussed. All practical
tasks for this part of the course are related to keep-
ing students on their way to finishing the final project
games. These include students presenting game ideas,
project plans, vertical slices, usability tests, a final
game, and weekly reports on who has achieved what.

Most of the groups were able to successfully build
a playable game for the final project, which is signif-
icantly better than the previous version of the course.
Students created RPG games (figure 2), quest games
(figure 3), logical games (figure 4) and action games
(figure 5). The variety of these games shows that stu-
dents are free to create games of their choice instead
of being limited to the genre and content given by the
teacher.

6 CONCLUSIONS

This version of the course made more progress than
the one based on the XNA Game Studio, even though
students had to learn to use Unity in a short time. The
fact that the game engine incorporates everything nec-
essary to connect the player, the art and the surround-
ings greatly influenced what students could achieve.

Although, in order to keep up-to-date with video
game development, it makes sense to focus on game
development rather than learning the tool, implemen-
tation in the form of a set of courses.

The video game development course can be based
on the Unity game engine, as it has a small en-
try threshold, free of charge for academic purposes,
a cross-platform, real game engine common in the

game development industry. Based on our experience,
Unity is a good option to teach a separate game de-
velopment course. Since Unity is easy to learn, stu-
dents can get it in less than half a semester, which
leaves more than half a semester to focus on any topic
you consider important (game design, project man-
agement, etc.).

Another result of this analysis is the effectiveness
of cooperative learning and teamwork strategies, es-
pecially in computer laboratories.

One of the most important conclusions we have
reached is that learning to design games requires a
change of perspective from the teacher-centred envi-
ronment in which the teacher dictates the learner’s
learning experience (e.g., leadership from outside
(King, 1993)). A learning environment in which stu-
dents have greater control over what they learn and
teachers serve as facilitators in this process.

REFERENCES

Adams, E. (2013). Fundamentals of game design. New
Riders, 4rd edition.

Ahlquist, J. B. and Novak, J. (2007). Game Development
Essentials: Game Artificial Intelligence. Cengage
Learning.

Axon, S. (2016). Unity at 10: For better—or
worse—game development has never been easier.
https://arstechnica.com/gaming/2016/09/unity-at-10-
for-better-or-worse-game-development-has-never-
been-easier/.

Barnes, T., Richter, H., Powell, E., Chaffin, A., and God-
win, A. (2007). Game2learn: Building cs1 learn-
ing games for retention. ACM SIGCSE Bulletin,
39(3):121–125.

Batchelor, J. (2020). GamesIndustry.biz
presents. . . The Year in Numbers 2020.
https://www.gamesindustry.biz/articles/2020-12-
21-gamesindustry-biz-presents-the-year-in-numbers-
2020.

Becker, K. and Parker, J. R. (2007). Serious Games + Com-
puter Science = Serious CS. Journal of Computing
Sciences in Colleges, 23(2):40–46.

Bond, J. G. (2014). Introduction to Game Design, Proto-
typing, and Development: From Concept to Playable
Game with Unity and C#. Addison-Wesley Profes-
sional.

Bradfield, C. (2018). Godot Engine Game Development
Projects: Build five cross-platform 2D and 3D games
with Godot 3.0. Packt Publishing, Birmingham.

Brown, Q., Lee, F., and Alejandre, S. (2009). Emphasiz-
ing soft skills and team development in an educational
digital game design course. In Proceedings of the
4th International Conference on Foundations of Dig-
ital Games, FDG ’09, page 240–247, New York, NY,
USA. Association for Computing Machinery.

Using Unity to Teach Game Development

513

Clark, B., Rosenberg, J., Smith, T., Steiner, S., Wallace, S.,
and Orr, G. (2007). Game development courses in the
computer science curriculum. Journal of Computing
Sciences in Colleges, 23(2):65–66.

Claypool, K. and Claypool, M. (2005). Teaching software
engineering through game design. ACM SIGCSE Bul-
letin, 37(3):123–127.

Coleman, R., Krembs, M., Labouseur, A., and Weir, J.
(2005). Game design & programming concentra-
tion within the computer science curriculum. ACM
SIGCSE Bulletin, 37(1):545–550.

Comber, O., Motschnig, R., Mayer, H., and Haselberger, D.
(2019). Engaging students in computer science ed-
ucation through game development with Unity. In
2019 IEEE Global Engineering Education Confer-
ence (EDUCON). IEEE.

de Macedo, D. V. and Rodrigues, M. A. F. (2011). Ex-
periences with rapid mobile game development using
Unity engine. Computers in Entertainment, 9(3):1–
12.

Dickson, P. E. (2015). Using Unity to teach game devel-
opment. In Proceedings of the 2015 ACM Conference
on Innovation and Technology in Computer Science
Education. ACM.

Dickson, P. E., Block, J. E., Echevarria, G. N., and Keenan,
K. C. (2017). An experience-based comparison of
Unity and Unreal for a stand-alone 3D game develop-
ment course. In Proceedings of the 2017 ACM Confer-
ence on Innovation and Technology in Computer Sci-
ence Education. ACM.

Distasio, J. and Way, T. (2007). Inclusive computer science
education using a ready-made computer game frame-
work. In Proceedings of the 12th annual SIGCSE con-
ference on Innovation and technology in computer sci-
ence education - ITiCSE’07. ACM Press.

Estey, A., Long, J., Gooch, B., and Gooch, A. A. (2010). In-
vestigating studio-based learning in a course on game
design. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games -
FDG’10. ACM Press.

Fachada, N. and Códices, N. (2020). Top-down design of a
CS curriculum for a computer games BA. In Proceed-
ings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education. ACM.

Goldstone, W. (2009). Unity game development essentials.
Packt Publishing Ltd.

Haranin, O. M., Katsko, O. O., and Moiseienko, N. V.
(2017). Developer software tools in a course “Devel-
opment of computer games”. New computer technol-
ogy, 15:160–163.

Haranin, O. M. and Moiseienko, N. V. (2018). Adaptive ar-
tificial intelligence in RPG-game on the Unity game
engine. CEUR Workshop Proceedings, 2292:143–
150.

Harris, J. (2011). Teaching Game Programming Using
XNA: What Works and What Doesn’t. Journal of
Computing Sciences in Colleges, 27(2):174–181.

Jones, R. M. (2000). Design and implementation of com-
puter games. ACM SIGCSE Bulletin, 32(1):260–264.

Katsko, O. O. and Moiseienko, N. V. (2018). Devel-
opment computer games on the Unity game engine
for research of elements of the cognitive thinking in
the playing process. CEUR Workshop Proceedings,
2292:151–155.

King, A. (1993). From sage on the stage to guide on the
side. College Teaching, 41(1):30–35.

Linhoff, J. and Settle, A. (2008). Teaching game program-
ming using XNA. In Proceedings of the 13th annual
conference on Innovation and technology in computer
science education - ITiCSE’08. ACM Press.

Manzur, A. and Marques, G. (2018). Godot Engine Game
Development in 24 Hours. Sams Publishing, India-
nopolis.

Martin, J. and Smith, C. (2002). A cross-curricular team
based approach to game development. Journal of
Computing Sciences in Colleges, 17(5):39–45.

Miles, R. (2011). Microsoft XNA Game Studio 4.0: Learn
Programming Now! Pearson Education.

Millington, I. (2019). AI for Games. CRC Press.
Morrison, B. B. and Preston, J. A. (2009). Engagement.

ACM SIGCSE Bulletin, 41(1):342–346.
Parberry, I., Kazemzadeh, M. B., and Roden, T. (2006). The

art and science of game programming. In Proceedings
of the 37th SIGCSE technical symposium on Com-
puter science education - SIGCSE’06. ACM Press.

Parberry, I., Roden, T., and Kazemzadeh, M. B. (2005).
Experience with an industry-driven capstone course
on game programming. In Proceedings of the 36th
SIGCSE technical symposium on Computer science
education - SIGCSE’05. ACM Press.

Peng, C. (2015). Introductory game development course:
A mix of programming and art. In 2015 International
Conference on Computational Science and Computa-
tional Intelligence (CSCI). IEEE.

Prokhorov, O. V., Lisovichenko, V. O., Mazorchuk, M. S.,
and Kuzminska, O. H. (2021). Digital technology im-
plementation for students’ involvement base on 3D
quest game for career guidance and estimating stu-
dents’ digital competences. CEUR Workshop Pro-
ceedings.

Rankin, Y., Gooch, A., and Gooch, B. (2008). The im-
pact of game design on students' interest in CS. In
Proceedings of the 3rd international conference on
Game development in computer science education -
GDCSE’08. ACM Press.

Ritzhaupt, A. D. (2009). Creating a game development
course with limited resources. ACM Transactions on
Computing Education, 9(1):1–16.

Rocco, D. and Yoder, D. (2007). Design of a media and
gaming sequence for graduates in applied CS. Journal
of Computing Sciences in Colleges, 22(5):131–137.

Roden, T. E. and LeGrand, R. (2013). Growing a computer
science program with a focus on game development.
In Proceeding of the 44th ACM technical symposium
on Computer science education - SIGCSE’13. ACM
Press.

Saulter, J. (2007). Introduction to video game design and
development. McGraw-Hill, New York.

AET 2020 - Symposium on Advances in Educational Technology

514

Shultz, G. A. (2004). The story engine concept in CS ed-
ucation. Journal of Computing Sciences in Colleges,
20(1):241–247.

Sung, K. (2009). Computer games and traditional CS
courses. Communications of the ACM, 52(12):74–78.

Sweedyk, E. and Keller, R. M. (2005). Fun and games.
ACM SIGCSE Bulletin, 37(3):138–142.

Takahashi, D. (2018). John riccitiello q&a:
How unity ceo views epic’s fortnite success.
https://venturebeat.com/2018/09/15/john-riccitiello-
interview-how-unity-ceo-views-epics-fortnite-
success/.

Toftedahl, M. and Engström, H. (2019). A taxonomy of
game engines and the tools that drive the industry.
In DiGRA 2019, The 12th Digital Games Research
Association Conference, Kyoto, Japan, August, 6-10,
2019. Digital Games Research Association (DiGRA),
DiGRA. http://www.digra.org/wp-content/uploads/
digital-library/DiGRA 2019 paper 164.pdf.

Unity Technologies (2021). Unity Real-Time Development
Platform — 3D, 2D VR & AR Engine. https://unity.
com.

Unreal Engine (2021). The most powerful real-time 3D cre-
ation platform. https://www.unrealengine.com.

Vakaliuk, T., Kontsedailo, V., Antoniuk, D., Korotun, O.,
Semerikov, S., and Mintii, I. (2020a). Using Game
Dev Tycoon to develop professional soft competen-
cies for future engineers-programmers. CEUR Work-
shop Proceedings, 2732:808–822.

Vakaliuk, T. A., Kontsedailo, V. V., Antoniuk, D. S., Koro-
tun, O. V., Mintii, I. S., and Pikilnyak, A. V. (2020b).
Using game simulator Software Inc in the Software
Engineering education. CEUR Workshop Proceed-
ings, 2547:66–80.

Vanhatupa, J.-M. (2011). Game engines in game program-
ming education. In Proceedings of the 11th Koli Call-
ing International Conference on Computing Educa-
tion Research - Koli Calling’11. ACM Press.

Werner, L., Campe, S., and Denner, J. (2012). Children
learning computer science concepts via Alice game-
programming. In Proceedings of the 43rd ACM tech-
nical symposium on Computer Science Education -
SIGCSE’12. ACM Press.

Yannakakis, G. N. and Togelius, J. (2018). Artificial Intelli-
gence and Games. Springer International Publishing.

Using Unity to Teach Game Development

515

