316(082)

ТРЕТЬОМУ ТИСЯЧОЛІТІЮ ПРИСВЯЧУЄТЬСЯ

ІНФОРМОЕНЕРГЕТИЧНІ ТЕХНОЛОГІЇ

адаптаційних процесів життєдіяльності на початку III-го тисячоліття

Збірник наукових праць

Київ – Кривий Ріг 2001 зованими та непередбачуваними ефектами. Для видів, котрі здатні існувати та еволюціонувати під постійним впливом людини, загроза вимирання чи зникнення не ε достатньо реальною чи прогнозованою. Антропотолерантність - це один з імовірних шляхів антропно обумовленої еволюції органічного світу. Проблема антропотолерантності ε центральною у вихідних уявленнях про теорію зміненої природи.

Потужність, широкомасштабність та негативні наслідки змін неживої та живої природи людиною обумовили актуалізацію принципів екологічно свідомої поведінки людини в біосфері, ідей коеволюції людини та біосфери. Стратегії діяльності людини мають все більше вписуватися в природні саморегуляційні та самовідновні процеси живої природи. Адаптивне та самозбережуюче реагування органічного світу на діяльність людини є неоднозначним та багатоманітним, але тільки той чи інший рівень антропотолерантності забезпечує більшу чи меншу сталість в антропно зміненому середовищі. Напрями руху живої природи до все більшої антропотолерантності та спрямованість стратегій людини на збереження різноманітності живої природи, підтримання її відновних сил можуть бути виразом коеволюції в біосфері, коли функціонування природи та людини вкладаються в одне русло історичного розвитку. Реальність чи ілюзорність таких уявлень поки що знаходяться за межами сучасного та осяжного наукового бачення.

Кирин А.А., Корольский В.В., Афонин А.П.

МОДЕЛИРОВАНИЕ ПРОЦЕССА АДАПТАЦИИ

Процессы адаптации играют большую роль в жизнедеятельности организма. Адаптация проявляется на самых различных уровнях жизнедеятельности (организменном, органном, клеточном) и к самым различным агентам (к температуре, свету, звуку, электрическому току и т.д.). Не адаптируются только рецепторы мышц, рецепторы давления каротидного синуса и болевые рецепторы роговицы глаза.

Наиболее известны математические теории адаптации Хилла (1) и Рашевского (2). Рашевский оперирует понятиями о двух субстанциях или группах субстанций с концентрациями (ε и f), отношение которых определяет порог возбуждения, и описывает влияние силы тока на значения этих параметров. Хилл, так же как и Рашевский, оперирует обобщенными факторами (V и U), под которыми следует понимать в нервной клетке соответственно мембранный потенциал и его критическую величину, при которой возникает возбуждение. В отличие от Рашевского, Хилл представляет движущей силой адаптации не внешний раздражитель, а те первичные изменения, которые возникают в живом субстрате под влиянием внешнего воздействия. Система уравнений Хилла имеет вид:

где V_0 и U_0 - начальные значения V и U соответственно, I- величина раздражителя, b,k, \bowtie - константы.

Модель Хилла обладает такими достоинствами, как возможность её обобщения и конкретизации. Если рассмотреть эквивалентную схему нервной клетки, состоящую из ёмкости C_1 и параллельно соединённых с ней сопротивления R и источника тока, каковым может быть большой заряд на ёмкости C_2 , то нетрудно убедиться, что возникающие в ней при прохождении электрического тока процессы действительно описываются уравнениями Хилла.

Так, объединяя уравнения Хилла, можно получить линейное неоднородное дифференциальное уравнение 2-го порядка:

$$\frac{d^2U}{dt^2} + (\frac{80}{3} + \frac{80}{k})\frac{dU}{dt} + \frac{80}{k}U = bi + \frac{80}{k}U_0$$

описывающее изменение критического уровня деполяризации мембраны. Таким же уравнением можно описать и прохождение электрического тока через эквивалентную схему мембраны:

$$RC_1 \frac{d^2q}{dt^2} + \frac{dq}{dt} + \frac{q}{RC_2} = I.$$

Если принять стандартные значения параметров мотонейрона кошки $R=0.8\cdot 10^6$ Ом, $C_1=3\cdot 10^{-9}$ Ф (3), то уравнение (3) можно записать в виде:

$$0,0024 \frac{d^3q}{dt^2} + \frac{dq}{dt} + \frac{q}{RC_2} = I.$$

Однако, такая модель не даёт спонтанно развивающегося процесса возбуждения. Чтобы смоделировать последнее, необходимо в уравнение (3) ввести нелинейный член, содержащий произведение первых двух членов с весовым коэффициентом, равным возбудимости нервной клетки (4). Тогда уравнение в целом примет вид:

$$\frac{RC,q \ a}{I_b} + RC_1q + a + \frac{a}{RC_1} = I.$$

Смысл такого подхода состоит в учете выполняемой нервной клеткой работы в соответствии с уравнением термодинамики (5):

$$dU = \sum_{k=1}^{\infty} P_k dx_k + \Delta P dx, \qquad 6$$

являющемся эквивалентом уравнения Гиббса-Гельмгольца:

$$\Delta U = T\Delta S + \Delta F \,, \qquad 7$$

где $dU(\Delta U)$ - изменение полной (внутренней) энергии системы, P_{κ} - потенциал (взаимодействия), x_{κ} - обобщенная координата, $\Delta P dx$ - некомпенсированное

взаимодействие, $T\Delta S$ — изменение связанной, ΔF — изменение свободной энергии.

Объединяя первые два члена уравнения (5), получаем уравнение, отражающее факт изменения проводимости в зависимости от силы тока через мембрану:

$$RC_1(1+\frac{q}{I_b})q''+q'+\frac{q}{RC_2}=I,$$
 8

особенно резко изменяющего свойства мембраны при отрицательных значениях тока.

Для решения уравнения (5) задаются начальные значения q и q', коэффициенты R, C_I и C_2 , I_k , возмущение I. При этом удобно ввести масштабные коэффициенты:

$$i = 0.8 \cdot 10^6 I$$
, **0**= $10^3 t$, **0**= V , $C_M = 0.8 \cdot 10^9 C$, **9**= $\frac{R}{0.8 \cdot 10^6} = 1$, где

машинные значения соответственно тока, времени, напряжения, емкости и сопротивления. Тогда уравнение принимает вид:

$$\frac{2,4Q''\cdot Q'}{i_a} + 2,4Q'' + Q' + \frac{Q}{C_{w_a}} = i.$$

В момент возникновения возбуждения предусматривается ограничение значения произведения $Q^{(i)}Q^{(i)}$ величиной 0,00156.

Уравнение (9) решается при разных значениях и разном направлении раздражающего тока I, а также различных значениях I_k и RC_2 . При этом получается допороговый эффект раздражения, возбуждение при замыкании катода и размыкании анода, спонтанная активность при действии деполяризации и эндогенного типа. Представляет интерес сопоставление действия стимула прямоугольной формы с действием линейно нарастающего стимула со скоростью 50 реобаз/с при различных значениях RC_2 .

Математический анализ процесса адаптации показывает, что его природа связана с наличием емкостного элемента (C_2) , функцию которого в нервной клетке, по-видимому, выполняют ионы калия и хлора, обуславливая потенциал покоя. Причем, чем больше емкость, тем слабее выражен процесс адаптации. Подтверждением правильности этих представлений является теория адаптации рецепторов сетчатки глаза академика Лазарева, в соответствии с которой процесс адаптации протекает параллельно с изменением в клетке количества зрительного пигмента родопсина.

Теория Хилла объясняет процессы адаптации не только в нервной клетке, поскольку она оперирует обобщенными понятиями. Используя понятие обобщенной емкости, которое, наряду с понятиями обобщенной массы, обобщенного сопротивления применяется в теории систем, можно объяснить наличие в организме человека адаптационных процессов, протекающих с различной ско-

ростью. Это касается также и процесса адаптации студентов к обучению в вузе.

Литература

- 1. Hill A.V.Exitation and Accommodation in nerve. Proceedings of the Royal society. Ser.B, 119, № 814. 1936. p.305-355.
- 2. Rashevsky N. Mathematical biophysics. Chicago Illinois. 1938. 340 p.
- 3. Экклс Дж. Физиология нервных клеток.-М.: Изд-во иностр. лит-ры, 1959 298c.
- Кирин А.А. Устройство для воспроизведения передаточной функции нервной клетки. Авторское свидетельство СССР № 860096, кл. G06G7/60.-1981.
- **5. Гухман А.А.** Об основаниях термодинамики.-М.: Энергоатомиздат, 1986. 384c.
- **6. Кирин А.А.** Человек-оператор в эргатической системе.- Киев: Знание Украинской СССР, 1982. 21с.
- 7. **Кірін А.О.** Парабіоз та закони індивідуального розвитку. Особливості формування та становлення психофізіологічних функцій в онтогенезі. Матеріали симпозіуму. Київ-Черкаси, 1999. с.40.

Карпенко О. Б., Букалов А. В., Чикирисова Г. В.

СОВРЕМЕННЫЕ ПСИХОИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И ПРОЦЕССЫ АДАПТАЦИИ ЛИЧНОСТИ В СОЦИУМЕ

С 1992 по 1997 г. группа научных сотрудников Международного института соционики под руководством директора А. В. Букалова выполняла работы по соционической экспертизе производственных коллективов, реорганизации и формированию новых структур и консультированию руководителей гредприятий и подразделений. В частности исследовались вопросы адаптации к условиям профессиональной деятельности на Крайнем севере России [2].

Целью нашей работы было оказание помощи руководителям предприятий в создании эффективной системы управления, совершенствовании производственной структуры и улучшении психологического климата в коллективе. Поэтому основную часть протестированных составляли работники аппарата управления различных производственных коллективов. Но в целом исследование охватило все уровни структурной организации коллективов: от руководителей до непосредственных исполнителей. Кроме работников предприятий в поле нашего исследования попало небольшое количество пенсионеров, все еще принимающих участие в деятельности своих трудовых коллективов, и студентов, проходивших производственную практику.