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Abstract. Cryptocurrencies refer to a type of digital asset that uses distributed ledger, or blockchain technology
to enable a secure transaction. Like other financial assets, they show signs of complex systems built from a large
number of nonlinearly interacting constituents, which exhibits collective behavior and, due to an exchange of
energy or information with the environment, can easily modify its internal structure and patterns of activity. We
review the econophysics analysis methods and models adopted in or invented for financial time series and their
subtle properties, which are applicable to time series in other disciplines. Quantitative measures of complexity
have been proposed, classified, and adapted to the cryptocurrency market. Their behavior in the face of critical
events and known cryptocurrency market crashes has been analyzed. It has been shown that most of these
measures behave characteristically in the periods preceding the critical event. Therefore, it is possible to build
indicators-precursors of crisis phenomena in the cryptocurrency market.

1 Introduction

The instability of global financial systems concerning nor-
mal and natural disturbances of the modern market and
the presence of poorly foreseeable financial crashes indi-
cate, first of all, the crisis of the methodology of modeling,
forecasting, and interpretation of modern socio-economic
realities. The doctrine of the unity of the scientific method
states that for the study of events in socio-economic sys-
tems, the same methods and criteria as those used in the
study of natural phenomena are applicable. Rapidly evolv-
ing coronavirus pandemic brings a devastating effect on
the entire world and its economy as a whole [1–7]. Fur-
ther instability related to COVID-19 will negatively af-
fect not only on companies and financial markets, but also
on traders and investors that have been interested in sav-
ing their investment, minimizing risks, and making deci-
sions such as how to manage their resources, how much
to consume and save, when to buy or sell stocks, etc., and
these decisions depend on the expectation of when to ex-
pect next critical change [8–21]. Despite the complexity of
the problem, the results of recent studies indicate that sig-
nificant success has been achieved within the framework
of interdisciplinary approaches, and the theory of self-
organization – synergetics [22, 23]. The modern paradigm
of synergetics is a complex paradigm associated with the
possibility of direct numerical simulation of the processes
of complex systems evolution, most of which have a net-
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work structure, or one way or another can be reduced to
the network. The theory of complex networks studies the
characteristics of networks, taking into account not only
their topology but also statistical properties, the distribu-
tion of weights of individual nodes and edges, the effects
of dissemination of information, robustness, etc. [1–4, 24–
26].

Complex systems consist of a plurality of interacting
agents possessing the ability to generate new qualities at
the level of macroscopic collective behavior, the manifes-
tation of which is the spontaneous formation of notice-
able temporal, spatial, or functional structures [27–32]. As
simulation processes, the application of quantitative meth-
ods involves measurement procedures, where importance
is given to complexity measures. Prigogine notes that the
concepts of simplicity and complexity are relativized in
the pluralism of the descriptions of languages, which also
determines the plurality of approaches to the quantitative
description of the complexity phenomenon [5].

Financial markets have been attracting the attention
of many scientists like engineers, mathematicians, physi-
cists, and others for the last two decades. Such vast inter-
est transformed into a branch of statistical mechanics -–
econophysics [30–34]. Physics, economics, finance, so-
ciology, mathematics, engineering, and computer science
are fields which, as a result of cross-fertilization, have cre-
ated the multi-, cross-, and interdisciplinary areas of sci-
ence and research such as econophysics and sociophysics,
thriving in the last two and a half decades. These mixed re-
search fields use knowledge, methodologies, methods, and
tools of physics for modeling, explaining and forecasting
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economic, social phenomena, and processes. Accordingly,
econophysics is an interdisciplinary research field, apply-
ing theories and methods originally developed by physi-
cists to solve problems in economics, usually those includ-
ing uncertainty or stochastic processes, nonlinear dynam-
ics, and evolutionary games.

There are deep relationships (as well as crucial differ-
ences) between physics and finance [35] that have inspired
generations of physicists as well as economists. In gen-
eral, physicists apprehend financial markets as complex
systems and, as such, they conducted numerous scientific
investigations [36].

Though statistical physics cannot get along without
quantum-mechanical ideas and notions in its fundamen-
tals, the main sphere of its interest is the macroscopic
description of systems with a large number of particles,
the dynamic behavior of which can’t be brought to mi-
croscopic dynamical equations of quantum mechanics fig-
ured out for separate particles without the use of respective
statistical postulates [37]. During last years an increas-
ing flow of works was observed, in which detailed models
of market process participants interactions and quantum-
mechanical analogies, notions, and terminology based on
methods of describing socio-economic systems are drawn
to explain both particular peculiarities of modern market
dynamics and economic functioning in whole [38–40]. In
papers [41, 42], Soloviev and Saptsin have suggested a
new paradigm of complex systems modeling based on the
ideas of quantum as well as relativistic mechanics. It has
been revealed that the use of quantum-mechanical analo-
gies (such as the uncertainty principle, the notion of the
operator, and quantum measurement interpretation) can be
applied for describing socio-economic processes.

In this review, we will continue to study Prigogine’s
manifestations of the system complexity, using the current
methods of quantitative analysis to determine the appro-
priate measures of complexity. The proposed measures of
complexity, depending on the methodology and construc-
tion methods, can be divided into the following classes:

(1) informational,

(2) (multi-)fractal,

(3) chaos-dynamic,

(4) recurrent,

(5) irreversible,

(6) based on complex networks,

(7) quantum.

Econophysics, based on a rich arsenal of research on
critical phenomena [43], very successfully copes with the
description of similar events in economics and finance.
These are crises and crashes that are constantly shaking
the world economy. The introduced measures of complex-
ity should, to one degree or another, respond to such phe-
nomena.

The key idea here is the hypothesis that the complexity
of the system before the crashes and the actual periods of

crashes must change. This should signal the correspond-
ing degree of complexity if they are able to quantify cer-
tain patterns of a complex system. A significant advantage
of the introduced measures is their dynamism, that is, the
ability to monitor the change in time of the chosen measure
and compare it with the corresponding dynamics of the
output time series. This allowed us to compare the critical
changes in the dynamics of the system, which is described
by the time series, with the characteristic changes of con-
crete measures of complexity. It turned out that quantita-
tive measures of complexity respond to critical changes in
the dynamics of a complex system, which allows them to
be used in the diagnostic process and prediction of future
changes.

The cryptocurrency market is a complex, self-
organized system, which in most cases can be considered
either as a complex network of market agents or as an inte-
grated output signal of this network – a time series, for ex-
ample, prices of individual cryptocurrency. The research
on cryptocurrency price fluctuations being carried out in-
ternationally is complicated due to the interplay of many
factors – including market supply and demand, the US
dollar exchange rate, stock market state, the influence of
crime, shadow market, and fiat money regulator pressure
that introduces a high level of noise into the cryptocur-
rency data. Moreover, in the cryptocurrency market, to
some extent, blockchain technology is tested in general.
Hence, the cryptocurrency prices exhibit such complex
volatility characteristics as nonlinearity and uncertainty,
which are difficult to forecast, and any obtained results are
uncertain. Therefore, cryptocurrency price prediction re-
mains a huge challenge [44–58].

As can be seen, markets have seen significant num-
bers of investors selling off and rebalancing their portfolios
with less risky assets. That has been leading to large losses
and high volatility, typical of crisis periods. The econ-
omy key for preventing such activity may lie in cryptocur-
rency and constructing effective indicators of possible crit-
ical states that will help investors and traders fill in safety.
Bitcoin, which is associated with the whole crypto market,
has such properties as detachment and independence from
the standard financial market and the proclaimed proper-
ties that should make it serve as the digital gold [59]. As
was shown by Kristoufek [60], Bitcoin promises to be a
safe-haven asset with its low correlation with gold, S&P
500, Dow Jones Industrial Average, and other authorita-
tive stock indices even in the extreme events. But authors
please not overestimate the cryptocurrency since accord-
ing to their calculations and, obviously, the current struc-
ture of the system, gold remains more significant. But for
ten years, this token has been discussed by many people, it
has experienced a lot in such a short period, many people
believe in it, and it has managed to form a fairly com-
plex and self-organized system. The integrated actions
from real-world merge in such dynamics and relevant in-
formation that is encoded in Bitcoin’s time series can be
extracted [61–63]. In the context of volatile financial mar-
kets, it is important to select such measures of complexity
that will be able to notify us of upcoming abnormal events
in the form of crises at an early stage.
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In this review we:

• present such measures;

• study critical and crash phenomena that have taken place
in the cryptocurrency market;

• try to understand whether crashes and critical events
could be identified and predicted by such informative
indicators or not.

This review is dedicated to the construction of such in-
dicators based on the theory of complexity. According to
our goals and actions, the paper is structured as follows. In
Section 2, we present our classification of Bitcoin’s crises
for the period from July 16, 2010 to January 21, 2021. In
Section 3, we describe the information measures of com-
plexity. In Section 4, we describe the multifractal analysis
methodology and its results for the crypto market. Section
5 defines what is chaos-based measures of complexity. In
section 6, we deal with the recurrence quantification anal-
ysis of critical and crisis phenomena in the cryptocurrency
market. Irreversible measure based on permutation pat-
terns is defined in Section 7. Section 8 presents the theory
and empirical results on network and multiplex measures
of complexity and their robustness for digital currencies.
Section 9 defines quantum complexity measures, the fea-
tures of their manifestation on the crypto market are dis-
cussed. Section 10 contains conclusions and some recom-
mendations for further research.

2 Data and classification

Bitcoin, being the most capitalized cryptocurrency, as a
rule, sets and determines the main trends of the crypto
market as a whole. Therefore, except for the part of the
work where the study of collective processes in the mar-
ket is carried out, we will use the time series of Bitcoin
[64]. From figure 1 it can be seen that at the beginning
of its existence, Bitcoin’s dynamic was determined mainly
by the processes of the formation of the market as a whole
and characterized by high volatility, which, however, was
not associated with critical phenomena. Bariviera et al.
[65] find that the Hurt exponent changes significantly dur-
ing the first years of existence of Bitcoin, and now it is less
unstable than before. Moreover, they detect more evidence
of information since 2014 [66].

Being historically proven, popular, and widely used
cryptocurrency for the whole existence of cryptocurren-
cies in general, Bitcoin began to produce a lot of news and
speculation, which began to determine its future life. Sim-
ilar discussions began to lead to different kinds of crashes,
critical events, and bubbles, which professional investors
and inexperienced users began to fear. Thus, we advanced
into action and set the tasks:

• classification of such critical events and crashes;

• construction of such indicators that will predict crashes,
critical events in order to allow investors and ordinary
users to work in this market.

Accordingly, during this period in the Bitcoin market,
many crashes and critical events shook it. At the moment,

Figure 1: Bitcoin price development from July 16, 2010 to
January 21, 2021

there are various research works on what crashes are and
how to classify such risk events in the market. The defini-
tion of these events still has been debatable. Nevertheless,
the proposals of most authors have common elements that
allow us to arrive at a consensus. Generally, the market
crash is a sudden drastic decline in the prices of financial
assets in a specific market [67]. Additionally, the applied
model for a specific market takes an important place in
the definition of “drastic decline”. For instance, Wang et
al. [67] take into account events with a minimum one-day
decrease of 5% in the stock returns. These authors [26]
identify financial crashes as a decrease of 25% or less of
multi-year financial returns. Lleo and Ziembda [68] define
a crash as a specific event of a day, which decreasing clos-
ing price exceeds a fall of 10% between the highest and the
lowest value of the stock index in a year. Hong and Stein
[69] postulate that the market crash is an unexpected event
in which appearance was not accompanied by any finan-
cial news. Moreover, the price change during this event
is rather negative. Also, it is worth mentioning the study
of Min Shu and Wei Zhu [70] where their classification
of crashes included almost 50 crashes. It remains a lit-
tle unclear which factors influence their choice of such an
enormous amount of crashes in such a short period. Re-
searchers emphasize these drops as such, with a fall of
more than 15% and a duration of fewer than three weeks.
Nevertheless, regarding this classification, we are going to
emphasize the most relevant, where the complexity of the
index started to decrease and whose initial deviation from
regular behavior was noticeable in advance. Nowadays
some people proclaim Bitcoin as a “digital gold”. Gold
as a material has served for jewelry and art as well as elec-
tronic or medical components. Limited supply and current
acceptance of Bitcoin as a “digital gold” may erect it to
the same level as gold. While some people back up Bit-
coin‘s advantage, demonstrating its similarities with those
of gold and silver [71], others argue that it is the new
digital coin [72] due to its high volatility and unclear fu-
ture development. However, researchers find its potential
benefits during extreme market periods and provide a set
of stylized factors that claim to be successful long-short
strategies that generate sizable and statistically significant
excess returns [73]. Despite volatile swings and many crit-
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ics, Bitcoin has emerged and attracted much more confi-
dence. These studies [74, 75] consider that measures of fi-
nancial and macroeconomic activity can be drivers of Bit-
coin returns. Reviewing papers of the researches above,
the experience of others and our own [76–85], we have re-
vised our classification of such leaps and falls, relying on
Bitcoin time series during the entire period (01.01.2011-
21.01.2021) of verifiable fixed daily values of the Bitcoin
price (BTC) (https://finance.yahoo.com/cryptocurrencies).
We emphasize that

• crashes are short and time-localized drops that last ap-
proximately two weeks, with the weighty losing of price
each day. Their volatility is high. In percentage term,
their decline exceeds 30 percent, and normalized returns
proceed ±3σ or near to it;

• critical events are those falls that, during their existence,
have not had such massive changes in price as crashes.

Relying on these considerations, we emphasize 29 pe-
riods on Bitcoin time series, relying on normalized returns
and volatility, where returns are calculated as

G(t) = ln x(t + ∆t) − ln x(t) � [x(t + ∆t) − x(t)]/x(t) (1)

and normalized (standardized) returns as

g(t) � [G(t) − 〈G〉] /σ, (2)

where σ ≡
√
〈G2〉 − 〈G〉2 is the standard deviation of G,

∆t is time lag (in our case ∆t = 1), and 〈 . . . 〉 denotes the
average over the time period under study and volatility as

VT (t) =
1
n

t+n−1∑
t′= t

∣∣∣g(t′)
∣∣∣

From the mentioned stylized facts on BTC dynamics,
it was noticed how considerably it started to change near
2014. To gain a deeper understanding of its existence in
the starting period, we divided the BTC time series into
two periods: (01.01.2011-31.08.2016) and (01.09.2016-
21.01.2021). More detailed information about crises,
crashes, and their classification under these definitions is
given in table 1 and table 2.

Therefore, according to our classification crisis periods
with numbers (1, 2, 4-6, 8, 9, 13, 18, 23-25, 27, 29) are
crashes, all the rest – critical events.

Figure 2 confirms the importance of dividing the BTC
time series in order to observe its dynamics in more detail.
However, as it can be seen, we could separate time series
in much deeper time scales.

In figure 3 output Bitcoin time series for the first
and the second periods, their normalized returns g(t), and
volatility VT (t) calculated for the window of size 100 are
presented.

From figure 3 we can see that during periods of crashes
and critical events normalized returns g increases consid-
erably in some cases beyond the limits ±3σ. This indicates
deviation from the normal law of distribution, the pres-
ence of the “heavy tails” in the distribution g, which are
characteristics of abnormal phenomena in the market. At
the same time volatility also grows. Such qualities are the

foundation of our classification for crashes, as it has been
mentioned already. All the rest events are critical. These
characteristics serve as indicators of crashes and critical
events as they react only at the moment of the above-
mentioned phenomena and do not allow identifying the
corresponding abnormal phenomena in advance. In con-
trast, most of the indicators described below will respond
to critical changes and crashes in advance. It enables them
to be used as indicators – precursors of such phenomena.

Calculations were carried out within the framework
of the algorithm of a rolling (sliding, moving) window.
For this purpose, the part of the time series (window), for
which there were calculated measures of complexity, was
selected, then the window was displaced along with the
time series in a predefined value, and the procedure re-
peated until all the studied series had exhausted. Further,
comparing the dynamics of the actual time series and the
corresponding measures of complexity, we can judge the
characteristic changes in the dynamics of the behavior of
complexity with changes in the cryptocurrency. If this or
that measure of complexity behaves in a definite way for
all periods of crashes, for example, decreases or increases
during the pre-crashes or pre-critical period, then it can
serve as their indicator or precursor.

Calculations of measures of complexity were carried
out both for the entire time series, and for a fragment of
the time series localizing some of the emphasized crashes
and critical events. In the latter case, fragments of time
series of the same length with fixed points of the onset
of crashes or critical events were selected and the results
of calculations of complexity measures were compared to
verify the universality of the indicators. Following some
described below procedures such time localization as, ex-
ample, of length 100 or 200, either won‘t make any sense,
or won‘t be possible as some of them are sensitive to time
localization, or require a longer length of the time series
as it is required by the procedure for better accuracy of
further calculations

3 Informational measures of complexity

Complexity is a multifaceted concept, related to the degree
of organization of systems. Patterns of complex organi-
zation and behavior are identified in all kinds of systems
in nature and technology. Essential for the characteriza-
tion of complexity is its quantification, the introduction of
complexity measures, or descriptors [86].

We may speak of the complexity of a structure, mean-
ing the amount of information (number of bits) of the
structure; this is the minimum space we need to store
enough information about the structure that allows us its
reconstruction. We may also speak of the algorithmic
complexity of a certain task: this is the minimum time
(or other computational resources) needed to carry out this
task on a computer. And we may also speak of the com-
munication complexity of tasks involving more than one
processor: this is the number of bits that have to be trans-
mitted in solving this task [87–89].
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Table 1: List of Bitcoin major crashes and critical events since June 2011 till July 2016

№ Name Days in Bitcoin High Bitcoin Low Decline, Decline,
correction Price, $ Price, $ % $

1 07.06.2011-10.06.2011 3 29.60 14.65 50 14.95
2 11.10.2011-18.10.2011 7 4.15 2.27 45 1.88
3 15.01.2012-16.02.2012 32 7.00 4.27 39 2.73
4 15.08.2012-18.08.2012 3 13.50 8.00 40 5.50
5 08.04.2013-15.04.2013 7 230.00 68.36 70 161.64
6 28.04.2013-02.05.2013 4 144.00 98.09 32 45.91
7 19.06.2013-04.07.2013 15 111.29 68.50 38 42.79
8 04.12.2013-07.12.2013 3 1237.66 697.02 44 540.64
9 05.02.2014-21.02.2014 16 904.52 111.55 88 792.97
10 24.03.2014-09.04.2014 17 567.56 384.63 32 182.93
11 09.08.2014-17.08.2014 8 592.06 462.18 22 129.88
12 22.09.2014-04.10.2014 12 436.86 322.86 26 114.00
13 12.01.2015-14.01.2015 2 269.33 164.92 39 104.41
14 27.07.2015-23.08.2015 27 293.70 211.43 28 82.27
15 09.11.2015-11.11.2015 2 380.22 304.71 28 75.51
16 18.06.2016-21.06.2016 3 761.04 590.56 22 170.48
17 29.07.2016-01.08.2016 3 654.74 513.43 24 141.31

Table 2: List of Bitcoin major crashes and critical events since January 2017 till March 2020

№ Name Days in Bitcoin High Bitcoin Low Decline, Decline,
correction Price, $ Price, $ % $

18 04.01.2017-11.01.2017 7 1135.41 785.42 30 349.99
19 15.03.2017-18.03.2017 3 1253.43 971.38 23 282.05
20 10.06.2017-15.07.2017 35 2973.44 1914.09 36 1059.35
21 31.08.2017-13.09.2017 13 4921.85 3243.08 34 1678.77
22 08.11.2017-12.11.2017 4 7444.36 5878.13 21 1566.23
23 16.12.2017-30.12.2017 14 19345.49 12531.52 35 6813.97
24 06.01.2018-05.02.2018 30 17172.30 6937.08 60 10235.22
25 04.03.2018-05.04.2018 33 11504.42 6634.86 42 4869.56
26 04.05.2018-27.05.2018 23 9845.90 7118.88 28 2727.02
27 18.11.2018-15.12.2018 27 5615.26 3232.51 42 2382.75
28 12.07.2019-16.07.2019 4 11797.37 9423.44 20 2373.93
29 06.03.2020-16.03.2020 10 9122.55 5014.48 45 4108.07

Historically, the first attempt to quantify complexity
was based on Shannon’s information theory [90] and Kol-
mogorov complexity [91].

3.1 Lempel-Ziv complexity

Lempel-Ziv complexity (LZC) is a classical measure that,
for ergodic sources, relates the concepts of complexity (in
the Kolmogorov-Chaitin sense), and entropy rate [92, 93].
For an ergodic dynamical process, the amount of new in-
formation gained per unit of time (entropy rate) can be
estimated by measuring the capacity of this source to gen-
erate new patterns (LZC). Because of the simplicity of the
LZC method, the entropy rate can be estimated from a sin-
gle discrete sequence of measurements with a low compu-
tational cost [94].

In this paper, we show that the LZC measure can be
just such a measure of complexity, which is an early pre-

cursor of crisis phenomena in the cryptocurrency market
[2, 79, 95, 96].

Historically, the first LZC measure system studies for
financial time series were conducted by S Da Silva et al.
[96–99]. They considered the deviation of LZC from that
value for a random time series as a measure of actual
market efficiency in absolute [95, 96, 98, 99] or relative
[97] terms. Using this approach authors were able to de-
tect decreases in efficiency rates of the major stocks listed
on the Sao Paulo Stock Exchange in the aftermath of the
2008 financial crisis [98]. In [100], authors have surveyed
the principal applications of algorithmic (Kolmogorov)
complexity to the problem of financial price motions and
showed the relevance of the algorithmic framework to
structure tracking in finance. Some empirical results are
also provided to illustrate the power of the proposed es-
timators to take into account patterns in stock returns. In
paper [101] was proposed a generic methodology to esti-
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Figure 2: The dynamics of the daily values of the BTC price. The inset shows 1-4 crisis periods presented in table 1.

mate the Kolmogorov complexity of financial returns. Ex-
amples are given with simulated data that illustrate the ad-
vantages of our algorithmic method: among others, some
regularities that cannot be detected with statistical meth-
ods can be revealed by compression tools. Applying com-
pression algorithms to daily returns of the Dow Jones In-
dustrial Average (DJIA), the authors concluded on an ex-
tremely high Kolmogorov complexity and by doing so,
proposed another empirical observation supporting the im-
possibility to outperform the market. The structural com-
plexity of time series describing returns on New York’s
and Warsaw’s stock exchanges was studied using two esti-
mates of the Shannon entropy rate based on the Lepel-Ziv
and Context Tree Weighting algorithms [102]. Such struc-
tural complexity of the time series can be used as a mea-
sure of the internal (modelless) predictability of the main
pricing processes and testing the hypothesis of an efficient
market. Somewhat surprisingly, the results of [103], in
which the authors computed the LZC from two compos-
ite stock indices, the Shanghai stock exchange composite
index (SSE) and the DJIA, for both low-frequency (daily)
and high-frequency (minute-to-minute) stock index data.
The calculation results indicate that that the US market
is basically fully random and consistent with the efficient
market hypothesis (EMH), irrespective of whether low- or
high-frequency stock index data are used. The Chinese
market is also largely consistent with the EMH when low-
frequency data are used. However, a completely different
picture emerges when the high-frequency stock index data
are used. H. Cao and Y. Li [104] presents a novel method
for measuring the complexity of a time series by unravel-
ing a chaotic attractor modeled on complex networks. The
complexity index, which can potentially be exploited for
prediction, has a similar meaning to the LZC and is an ap-
propriate measure of a series’ complexity. The proposed
method is used to research the complexity of the world’s
major capital markets. The almost absent sensitivity of the
LZC to fluctuations in the time series indicates most likely
errors in the calculation algorithm during the transforma-
tion of the time series. The complexity–entropy causality

plane is employed in order to explore disorder and com-
plexity in the space of cryptocurrencies [104]. They are
found to exist in distinct planar locations in the represen-
tation space, ranging from structured to stochastic-like be-
havior.

A brief analysis of the problem indicates that so far,
the Lempel-Ziv informational measure of the complexity
has not been used to study the stability and behavior of
the cryptocurrency market in a crisis. In this section, we
use the Lempel-Ziv complexity measure to study the cryp-
tocurrency market. Using the example of the most capital-
ized cryptocurrency – Bitcoin – we demonstrate the ability
to identify the dynamics of varying complexity. Particu-
larly relevant is the identification of the characteristic be-
havior of Bitcoin during the crisis phases of market behav-
ior. By observing the dynamics of the Lempel-Ziv mea-
sure, precursors of crisis phenomena can be constructed
[105].

3.1.1 The concept of Kolmogorov complexity

Let us begin with the well-known degree of complexity
proposed by Kolmogorov [106]. The concept of Kol-
mogorov complexity (or, as they say, algorithmic entropy)
emerged in the 1960s at the intersection of algorithm the-
ory, information theory, and probability theory. A. Kol-
mogorov’s idea was to measure the amount of informa-
tion contained in individual finite objects (rather than ran-
dom variables, as in the Shannon theory of information). It
turned out to be possible (though only to a limited extent).
A. Kolmogorov proposed to measure the amount of infor-
mation in finite objects using algorithm theory, defining
the complexity of an object as the minimum length of the
program that generates that object. This definition is the
basis of algorithmic information theory as well as algo-
rithmic probability theory: an object is considered random
if its complexity is close to maximum.

What is the Kolmogorov complexity and how to mea-
sure it? In practice, we often encounter programs that
compress files (to save space in the archive). The most
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(a)

(b)

Figure 3: The standardized dynamics, returns g(t), and volatility VT (t) of BTC/USD daily values for first (a) and second
(b) periods. Horizontal dotted lines indicate the ±3σ borders. The arrows indicate the beginning of one of the crashes or
the critical events

common are called zip, gzip, compress, rar, arj, and oth-
ers. Applying such a program to some file (with text, data,
program), we get its compressed version (which is usually
shorter than the original file). After that, you can restore
the original file using the paired program “decompressor”.
Therefore, approximately, the Kolmogorov complexity of
a file can be described as the length of its compressed ver-
sion. Thus, a file that has a regular structure and is well
compressed has a small Kolmogorov complexity (com-
pared to its length). On the contrary, a badly compressed
file has a complexity close to its length.

Suppose we have a fixed method of description (de-
compressor) D. For this word x, we consider all its de-
scriptions, i.e., all words y for which D(y) it is defined and
equal to x. The length of the shortest of them is called
the Kolmogorov complexity of the word x in this way of

description D:

KS D(x) = min{l(y) |D(y) = x}

where l(y) denotes the length of the word. The index
D emphasizes that the definition depends on the chosen
method D. It can be shown that there are optimal meth-
ods of description. The better the description method, the
shorter it is. Therefore, it is natural to make the following
definition: the method D1 is no worse than the method D2
if

KS D1 ≤ KS D2 (x) + c

for some c and all x.
Thus, according to Kolmogorov, the complexity of an

object (for example, the text is a sequence of characters) is
the length of the minimum program that outputs the text,
and entropy is the complexity that is divided by the length
of the text. Unfortunately, this definition is purely spec-
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ulative. There is no reliable way of identifying this pro-
gram uniquely, but there are algorithms that are actually
just trying to calculate the Kolmogorov complexity of text
and entropy.

A universal (in the sense of applicability to different
language systems) measure of the complexity of the fi-
nite character sequence was suggested by Lempel and Ziv
[100]. As part of their approach, the complexity of a se-
quence is estimated by the number of steps in the process
that gives rise to it.

Acceptable (editorial) operations are: a) character gen-
eration (required at least for the synthesis of alphabet el-
ements) and b) copying the “finished” fragment from the
prehistory (i.e. from the already synthesized part of the
text).

Let be Σ a complete alphabet, S – text (a sequence of
characters) composed of elements Σ; S [i] – ith text sym-
bol; S [i : j] – a snippet of text from the ith to jth character
inclusive (i < j); N = |S | – length of text S . Then the
sequence synthesis scheme can be represented as a con-
catenation

H(S ) = S [1 : i1]S [i1 + 1 : i2] . . .
. . . S [ik−1 + 1 : ik] . . . S [im−1 + 1 : N],

where S [ik−1 + 1 : ik] is the fragment S generated at the
kth step, and m = mH(S ) is the number of process steps.
Of all the schemes of generation is chosen the minimum
number of steps. Thus, the Lempel-Ziv complexity of the
sequence S is

cLZ(S ) = min
H
{mH(S )}.

The minimum number of steps is provided by the
choice to copy at each step the longest prototype from the
prehistory. If you mark by the position number j(k) from
which the copying begins in step k the length of the copy
fragment

l j(k) = ik − ik−1 − 1 = max
j≤ik−1
{l j : S [ik−1 + 1 : ik−1 + l j] =

= S [ j : j + l j − 1]}

and the kth component of these complex decomposition
can be written in the form

S [ik−1 + 1 : ik] =

S [ j(k) : j(k) + l j(k) − 1] if j(k) , 0,
S [ik−1 + 1] if j(k) = 0.

The case j(k) = 0 corresponds to a situation where a
symbol is in the position ik−1 + 1 that has not been encoun-
tered previously. In doing so, we use a character genera-
tion operation.

Complex text analysis can be performed in two
regimes – segmentation and fragmentation. The first
regime is discussed above. It gives an integrated view of
the structure of the sequence as a whole and reduces it
to disjoint but interconnected segments (without spaces).
The other regime is to search for individual fragments
characterized by an abnormally low complexity which
means that they characterized by a sufficiently high degree

of structure. Such fragments are detected by calculating
local complexity within variable-length windows that slide
along a sequence. Curves of change of local complexity
along a sequence are called complex profiles. A set of
profiles for different window sizes reveals the boundaries
of anomalous fragments and their relationship.

We will find the LZC complexity for the time series,
which is, for example, the daily values of the cryptocur-
rency price x(t). To investigate the dynamics of LZC and
compare it with cryptocurrency prices, we will find this
measure of complexity for a fixed length (window) con-
tract. To do this, we calculate the logarithmic returns ac-
cordingly to equation (1) and turn them into a sequence of
bits.

You can specify the number of states that are differen-
tiated (calculus system). Yes, for two different states we
have 0, 1, for three – 0, 1, 2, etc. In the case of three states,
unlike the binary coding system, a certain threshold σ is
set and the states g are coded as follows [96, 98, 99]:

g =


0 if g < −σ,
1 if −b ≤ g ≤ b,
2 if g > b.

The algorithm performs two operations: (1) adds a new
bit to an already existing sequence; (2) copies the already
formed sequence. Algorithmic complexity is the number
of such operations required to form a given sequence.

For a random sequence of lengths n, the algorithmic
complexity is calculated by expression LZCr = n/ log n.
Then, the relative algorithmic complexity is the ratio of
the obtained complexity to the complexity of the random
sequence LZC = LZC/LZCr.

Obviously, the classical indicators of algorithmic com-
plexity are unacceptable and lead to erroneous conclu-
sions. To overcome such difficulties, multiscale methods
are used.

The idea of this group of methods includes two con-
secutive procedures: 1) coarse-graining (“granulation”)
of the initial time series – the averaging of data on non-
intersecting segments, the size of which (the window of
averaging) increased by one when switching to the next
largest scale; 2) computing at each of the scales a defi-
nite (still mono scale) complexity indicator. The process
of “rough splitting” consists in the averaging of series se-
quences in a series of non-intersecting windows, and the
size of which – increases in the transition from scale to
scale [107]. Each element of the “granular” time series
follows the expression:

yτj =
1
τ

jτ∑
i=( j−1)τ+1

g(i), for 1 ≤ j ≤ N/τ, (3)

with corresponding scale factor τ. The length of each
“granular” row depends on the length of the window and is
even N/τ. For a scale of 1, the “granular” series is exactly
identical to the original one.

The coarse graining procedure for scales 2 and 3 is
shown in figure 4.

8

SHS Web of Conferences 107, 03001 (2021) https://doi.org/10.1051/shsconf/202110703001
M3E2 2021



Figure 4: Coarse-graining procedure diagram: (a) scale factor τ = 2; (b) scale factor τ = 3

To find the LZC measure of the time series, the rolling
time windows were considered; the index for every win-
dow was calculated, and then the average was obtained.

Obviously, the crisis in the cryptocurrency market re-
sponds to noticeable fluctuations in standardized returns.
Therefore, it is logical to choose σ as the value for the
threshold value b.

Figure 5 shows the dependence of the LZC on the
scale. The absence of LZC fluctuations at scales exceed-
ing 40 allows us to confine ourselves to this magnitude of
the scale when calculating the multiscale measure.

Calculations of measures of complexity were carried
for the two periods of BTC. Figure 6 presents the results
of calculations of mono-(LZCm1) and multi-(LZCm40) scal-
ing LZC measures. The calculations were performed for a
rolling window of 100 days and an increment of 1 day.

The data in figure 6 indicate that the LZC measure is
noticeably reduced both in the case of mono-scale (m1)
and averaged over the scales from 1 to 40 (m40) for all 29
crashes and critical events in the immediate vicinity of the
crisis point.

As the results of calculations showed, the choice of
the size of a rolling window is important: in the case of
large windows, points of crises of different times can fall
into the window, distorting the influence of each of the
crises. When choosing small windows, the results fluctu-
ate greatly, which makes it difficult to determine the actual
point of the crisis. The used window length of 100 days
turned out to be optimal for the separation of crises and
fixing the LZC measure as an indicator.

Since the LZC measure begins to decrease even be-
fore the actual crisis point, it can be called an indicator-
precursor of crisis phenomena in the cryptocurrency mar-
ket.

(a)

(b)

Figure 5: Scale-dependent LZC (a) and its version with
the rolling window approach (b)

3.2 Entropy as a measure of complexity

Nowadays, the most important quantity that allows us to
parameterize complexity in deterministic or random pro-
cesses is entropy. Originally, it was introduced by R. Clau-
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(a)

(b)

Figure 6: Comparative dynamics of BTC price fluctuations and mono- and multi-scaling LZC measures for first (a) and
second (b) periods of the entire time series of Bitcoin

sius [108], in the context of classical thermodynamics,
where according to his definition, entropy tends to increase
within an isolated system, forming the generalized second
law of thermodynamics. Then, the definition of entropy
was extended by Boltzmann and Gibbs [109, 110], linking
it to molecular disorder and chaos to make it suitable for
statistical mechanics, where they combined the notion of
entropy and probability [111].

After the fundamental paper of Shannon [90] in the
context of information theory, where entropy denoted the
average amount of information contained in the message,
its notion was significantly redefined. After this, it has
been evolved along with different ways and successful
enough used for the research of economic systems [112–
115].

A huge amount of different methods, as an example,
from the theory of complexity, the purpose of which is
to quantify the degree of complexity of systems obtained

from various sources of nature, can be applied in our study.
Such applications have been studied intensively for an eco-
nomic behavior system.

The existence of patterns within the series is the core
in the definition of randomness, so it is appropriate to es-
tablish such methods that will be based on the different
patterns and their repetition [116]. In this regard, Pincus
described the methodology Approximate entropy (ApEn)
[117] to gain more detail analysis of relatively short and
noisy time series, particularly, of clinical and psycholog-
ical. Its development was motivated by the length con-
straints of biological data. Since then it has been used
in different fields such as psychology [118], psychiatry
[119], and finance [120–124]. Pincus co-authored with
Kalman [124], considering both empirical data and mod-
els, including composite indices, individual stock prices,
the random-walk hypothesis, Black-Sholes, and fractional
Brownian motion models to demonstrate the benefits of
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ApEn applied to the classical econometric modeling ap-
paratus. This research the usefulness of ApEn on the ex-
ample of three major events of the stock market crash in
the US, Japan, and India. During the major crashes, there
is significant evidence of a decline of ApEn during and
pre-crash periods. Based on the presented results, their re-
search concludes that ApEn can serve as a base for a good
trading system. Duan and Stanley [125] showed that it
is possible to effectively distinguish the real-world finan-
cial time series from random-walk processes by examining
changing patterns of volatility, approximate entropy, and
the Hurst exponent. The empirical results prove that finan-
cial time series are predictable to some extent and ApEn is
a good indicator to characterize the predictable degree of
financial time series. Alfonso Delgado-Bonal [126] gives
evidence of the usefulness of ApEn. The researcher quan-
tifies the existence of patterns in evolving data series. In
general, his results present that degree of predictability in-
creases in times of crisis.

Permutation entropy (PEn), according to the previous
approach, is a complexity measure that is related to the
original Shannon entropy (ShEn) that applied to the distri-
bution of ordinal patterns in time series. Such a tool was
proposed by Bandt and Pompe [127], which is character-
ized by its simplicity, computational speed that does not
require some prior knowledge about the system, strongly
describes nonlinear chaotic regimes. Also, it is character-
ized by its robustness to noise [128, 129] and invariance to
nonlinear monotonous transformations [130]. The combi-
nation of entropy and symbolic dynamics turned out to be
fruitful for analyzing the disorder for the time series of any
nature without losing their temporal information.

As an example, Henry and Judge [131] applied PEn
to the Dow Jones Industrial Average (DJIA) to extract in-
formation from this complex economic system. The re-
sult demonstrates the ability of the PEn method to detect
the degree of disorder and uncertainty for the specific time
that is explored. Higor et al. [132] applied PEn and statis-
tical complexity over sliding time-window of daily clos-
ing price log-returns to quantify the dynamic efficiency of
more than four hundred cryptocurrencies. Authors address
to the efficient market hypothesis when the values of two
statistical measures within a time-window cannot be dis-
tinguished from those obtained by chance. They found
that 37% of the cryptocurrencies in their study stayed ef-
ficient over 80% of the time, whereas 20% were informa-
tionally inefficient in less than 20% of the time. Moreover,
the market capitalization was not correlated with their effi-
ciency. Performed analysis of information efficiency over
time reveals that different currencies with similar tempo-
ral patterns formed four clusters, and it was seen that more
young currencies tend to follow the trend of the most lead-
ing currencies. Sensoy [133] compared the time-varying
weak-form efficiency of Bitcoin prices in terms of US dol-
lars (BTC/USD) and euro (BTC/EUR) at a high-frequency
level by PEn. He noticed that BTC/USD and BTCEUR
have become more informationally useful since the be-
ginning of 2016, namely Bitcoin in the same period. Re-
searcher also found that with higher frequency in the Bit-
coin market, we had lower price efficiency. Moreover,

cryptocurrency liquidity (volatility) had a significant posi-
tive (negative) effect on the informational efficiency of its
price.

Also, Ayşe Metin Karakaş dedicated [134] both to Bit-
coin and Ethereum. Here, the concept of entropy was
applied for characterizing the nonlinear properties of the
cryptocurrencies. For her goal, Shannon, Tsallis, Rényi,
and Approximate entropies were estimated. From her em-
pirical results, it was obtained that all entropies were pos-
itive. Of great interest was the results of ApEn which
demonstrated larger value for Ethereum than for Bitcoin.
In this case, it concluded that Ethereum had higher volatil-
ity.

Pele [135] investigated the ability of several econo-
metrical models to forecast value at risk for a sample of
daily time series of cryptocurrency returns. Using high-
frequency data for Bitcoin, they estimated the entropy of
the intraday distribution of log-returns through the sym-
bolic time series analysis STSA, producing low-resolution
data from high-resolution data. Their results showed that
entropy had strong explanatory power for the quantiles of
the distribution of the daily returns. They confirmed the
hypothesis that there was a strong correlation between the
daily logarithmic price of Bitcoin and the entropy of in-
traday returns based on Christoffersen’s tests for Value at
Risk (VaR) backtesting, they concluded that the VaR fore-
cast built upon the entropy of intraday returns was the
best, compared to the forecasts provided by the classical
GARCH models.

3.2.1 Time delay method

The state of the system can be described by the set of vari-
ables. Its observational state can be expressed through a
d-dimensional vector or matrix, where each of its compo-
nents refers to a single variable that represents a property
of the system. After a while, the variables change, result-
ing in different system states.

Usually, not all relevant variables can be captured from
our observations. Often, only a single variable may be ob-
served. Thakens’ theorem [136] that was mentioned in pre-
vious sections ensures that it‘s possible to reconstruct the
topological structure of the trajectory formed by the state
vectors as the data collected for this single variable con-
tains information about the dynamics of the whole system.

For an approximate reconstruction of the original dy-
namics of the observed system, we project the time series
onto a Reconstructed Phase Space [130, 137, 138] with the
commonly used time delay method [130] which relied on
the embedding dimension and time delay.

The embedding dimension is being the dimensionality
of the reconstructed system (corresponds to the number
of relevant variables that may differ from one system to
another. The time delay parameter specifies the temporal
components of the vector components. As an example,
in recurrence analysis that will be described in section 6,
Webber and Zbilut [139] recommend setting the embed-
ding dimension between 10 and 20. Regarding the analy-
sis of financial systems, values between 1 and 20 for the
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embedding dimension are considered to be reasonable as
well as the time delay.

3.2.2 Shannon entropy

The general approach can be described as follows. For-
mally, we represent the underlying dynamic state of the
system in probability distribution form P and then the
Shannon entropy S with an arbitrary base (i.e. 2, e, 10)
is defined as:

S [P] = −

N∑
i=1

pi log pi. (4)

Here, in equation 4, pi represents the probability that
price i occurs in the sample’s distribution of the Bitcoin
time series, and N is the total amount of data in our system.
Dealing with continuous probability distributions with a
density function f (x), we can define the entropy as:

H( f ) = −

∫ +∞

−∞

f (x) log f (x)dx. (5)

According to the approach, the negative log increases
with rarer events due to the information that is encoded in
them (i.e., they surprise when they occur). Thus, when all
pi have the same value, i.e. where all values are equally
probable, and S [P] reaches its minimum for more struc-
tured time series (events that are more certain). Equation
5 is obeyed to the same rules as 4. In figure 7 are the em-
pirical results for Shannon entropy and Bitcoin time series.

It can be seen from the figure that Shannon’s entropy
is rapidly increasing at the very moment of the crisis itself
and is an excellent indicator of crisis phenomena.

3.2.3 Approximate entropy

To gain more detail analysis of the complex financial sys-
tems, it is known other entropy methods have become
known, particularly, ApEn developed by Pincus [117] for
measuring regularity in a time series.

When calculating it, given N data points
{x (i ) | i = 1, . . . ,N} are transformed into subvec-
tors ~X (i) ∈ <dE , where each of those subvec-
tors has [x(i ), x(i + 1), . . . , x(i + dE − 1)] for each
i, 1 ≤ i ≤ N −m + 1. Correspondingly, for further estnima-
tions, we would like to calculate a probability of finding
such patterns whose Chebyshev distance d[~X(i), ~X( j)]
does not exceed a positive real number r:

CdE
i (r) = (N − dE + 1)−1

N−dE+1∑
j=1

H(r − d[~X(i), ~X( j)])

whereH(·) is the Heviside function which count the num-
ber of instances d[~X(i), ~X( j)] ≤ r.

Next, we estimate

FdE (r) = (N − dE + 1)−1
N−dE+1∑

i=1

ln(CdE
i (r)),

and ApEn of a corresponding time series (for fixed dE and
r) measures the logarithmic likelihood that patterns that
are close for dE adjacent observations remain close on the
next comparison:

ApEn(dE , r,N) = FdE (r) − FdE+1(r), (6)

i.e., equation (6) measures the logarithmic likelihood that
sequences of patterns that are close for dE observations
will remain close after further comparisons. Therefore,
if the patterns in the sequence remain close to each other
(high regularity), the ApEn becomes small, and hence, the
time series data has a lower degree of randomness. High
values of ApEn indicate randomness and unpredictability.
But it should be considered that ApEn results are not al-
ways consistent, thus it depends on the value of r and the
length of the data series. However, it remains insensitive to
noise of magnitude if the values of r and dE are sufficiently
good, and it is robust to artifacts and outliers. Although
ApEn remains usable without any models, it also fits natu-
rally into a classical probability and statistics frameworks,
and, generally, despite its shortcomings, it is still the ap-
plicable indicator of system stability, which significantly
increased values may prognosticate the upcoming changes
in the dynamics of the data.

The empirical results for the corresponding measure
of entropy along with two periods of BTC are presented in
figure 8.

Long before the crisis, the value of this type of en-
tropy begins to decrease, the complexity of the system de-
creases. This measure, in our opinion, is one of the earliest
precursors of the crisis.

3.2.4 Permutation entropy

PEn, according to the previous approach, is a complex-
ity measure that is related to the fundamental Information
theory and entropy proposed by Shannon. Such a tool was
proposed by Bandt and Pompe [127], which is character-
ized by its simplicity, computational speed that does not
require some prior knowledge about the system, strongly
describes nonlinear chaotic regimes. Also, it is character-
ized by its robustness to noise [128, 129] and invariance to
nonlinear monotonous transformations [130]. The com-
bination of entropy and symbolic dynamics turned out to
be fruitful for analyzing the disorder for the time series
of any nature without losing their temporal information.
According to this method, we need to consider “ordinal
patterns” that consider the order among time series and
relative amplitude of values instead of individual values.
For evaluating PEn, at first, we need to consider a time se-
ries {x(i) | i = 1, . . . ,N} which relevant details can be “re-
vealed” in dE-dimensional vector

~X (i) = [x(i), x(i + τ), . . . , x(i + (dE − 1)τ)] ,

where i = 1, 2, . . . ,N − (dE − 1)τ, and τ is an embedding
delay of our time delayed vector. After it, we consider
dE! permutation patterns π = (k0, k1, . . . , kdE−1) of symbols
(0, 1, . . . , dE − 1) if the following condition for each ~X(i)
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(a)

(b)

Figure 7: ShEn dynamics along with the first (a) and the second (b) periods of the entire time series of Bitcoin

is satisfied:

x(i + k0) ≤ x(i + k1) ≤ . . . ≤ x(i + kdE−1).

We will use ordinal pattern probability distribution as
a basis for entropy estimation. Further, let us denote f (πl)
as the frequency of occurrence of the pattern πl. Then, the
relative frequencies of permutations in the time series are
defined as

p(πl) =
f (πl)

N − (dE − 1)τ
,

where the ordinal pattern probability distribution is given
by P = {p(πl) | l = 1, . . . , dE!}. Finally, permutation en-
tropy (denoted by S [P]) of the corresponding time series
presented in the following form:

S [P] = −

dE !∑
l=1

p(πl) log p(πl).

Then, to get more convenient values, we calculate Nor-
malized permutation entropy as:

Es[P] =
S [P]
S max

,

whose S max = ln dE! represents the maximum value of
ES [P] (a normalization constant), and normalized entropy
has a range 0 ≤ PEn ≤ 1. Here, the maximal entropy
possible value is realized when all dE! possible permuta-
tions have an equal probability of occurrence (more noise
and random data). With the much lower entropy value, we
get a more predictable and regular sequence of the data.
Therefore, the PEn gives a measure of the departure of
the time series from a complete noise and stochastic time
series.

There must be predefined appropriate parameters on
which PEn relying, namely, the embedding dimension
dE is paramount of importance because it determines dE!
possible states for the appropriate probability distribution.
With small values such as 1 or 2, parameter dE will not
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(a)

(b)

Figure 8: ApEn dynamics along with the first (a) and the second (b) periods of the entire time series of Bitcoin calculated
with rolling window of 100 days and the step size of 1 day

work because there are only few distinct states. Further-
more, for obtaining reliable statistics and better detecting
the dynamic structure of data, dE should be relevant to the
length of the time series or less [140]. For our experi-
ments, dE ∈ {3, 4} and τ ∈ {2, 3} indicate the best results.
Hence, in figure 9 we can observe the empirical results for
permutation entropy, where it serves as indicator-precursor
of the possible crashes and critical events.

Information measures of complexity due to their initial
validity and transparency, ease of implementation and in-
terpretation of the results occupy a prominent place among
the tools for the quantitative analysis of complex systems.

4 Fractal and multifractal measures of
complexity

The economic phenomena that cannot be explained by the
traditional efficient market hypothesis can be explained by

the fractal theory proposed by Mandelbrot [141]. Before,
fractal studies focus on the Rescaled Range (R/S) analysis
were proposed by Hurst [142, 143] in the field of hydrol-
ogy. However, Lo [144] discovered that the R/S method
is sensitive to short-term autocorrelation, which may lead
to a bias error of nonstationary time series. To solve this
problem, Penget et al. [145] proposed a widely used de-
trended fluctuation analysis (DFA) that uses a long-range
power law to avoid significant long-term autocorrelation
false detection [146]. As a multifractal extension (MF)
of the DFA approach, Kantelhardt et al. [147] introduced
the MF-DFA method that for a long time has been suc-
cessfully applied for a variety of financial markets, such
as stock [148–156], commodity [154, 157–160], tanker
[161], derivative [162], foreign exchange rates [163–167],
and electricity markets [168]. An especially interesting ap-
plication of multifractal analysis is measuring the degree
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(a)

(b)

Figure 9: PEn dynamics along with the first (a) and the second (b) periods of the entire time series of Bitcoin

of multifractality of time series, which can be related to
the degree of efficiency of financial markets [169–172].

Podobnik and Stanley [173] extended DFA by in-
troducing a detrended cross-correlation analysis (DCCA)
approach that can be used to study long-range cross-
correlation between two non-stationary time series.
Guided by ready-made approaches, Zhou [174] proposed
a multifractal detrended cross-correlation analysis (MF-
DCCA) [175], which is a combination of MF-DFA and
DCCA. Then the number of interesting methods has been
proposed, such as the method of MF-PX-DFA and MF-
PX-DMA [176], MF-X-DMA [177], MF-HXA [178],
MF-X-PF [179], etc. These increase the efficiency of some
applications of the MF-DCCA method. The MF-DCCA
method has been widely applied to describe the multi-
fractal characteristics of two cross-correlated nonstation-
ary time series in the financial field such as the foreign
exchange market [180, 181], the stock market [182–184],
the crude oil market [185–187], carbon market [188, 189],

and the commodity market [154, 190]. Zhang et al. also
employ MF-DCCA to examine the relationship between
mass media and new media [191] and to quantify cross-
correlation between investor sentiment proxies [192], i.e.,
fears [193] and Twitter happiness sentiment [194].

Along with common multifractal methods, Sattarhoff

and Gronwald [195] applied an intermittency coefficient
for the evaluation of financial market efficiency. While
the random walk corresponds to the most genuine form of
market efficiency, the larger the value of the intermittency
coefficient is, the more inefficient a market would be. In
an empirical application using data from the largest current
market for tradable pollution permits, the European Union
Emissions Trading Scheme, they show that this market be-
comes more efficient over time. Besides, the degree of
market efficiency is overall similar to that for the US stock
market; for one sub-period, the market efficiency is found
to be higher. While the first finding is anticipated, the sec-
ond finding is noteworthy, as various observers expressed
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regarding the information efficiency of this newly estab-
lished artificial market.

Since Bitcoin was born, it has attracted the consider-
able attention of researchers from different fields of sci-
ence that apply modern methods and models of analysis
of the peculiarities of the dynamics of the popular digital
currency, namely, the methods of multifractal analysis to
gain a deeper understanding of its inherent nonlinear sta-
tistical properties.

Using 1-min returns of Bitcoin price, Takaishi investi-
gated statistical properties and MF of Bitcoin time series
[196]. His results present that 1-min returns distribution
is fat-tailed, and kurtosis largely deviates from the Gaus-
sian expectation. Although with large time scales, kur-
tosis is anticipated to approach the Gaussian expectation,
he found that convergence to that is very slow. Skewness
is found to be negative at short time scales and becomes
consistent with zero at large time scales. Also, he ana-
lyzed daily volatility-asymmetry by using GARCH, GJR,
and RGARCH models and found no evidence of volatil-
ity asymmetry. On exploring MF using MF-DFA, it was
confirmed that the Bitcoin time series exhibits MF. The
sources of MF are also investigated, and it is confirmed
that both temporal correlation and the fat-tailed distribu-
tion contribute to the MF, and the degree of MF for the
temporal correlation is stronger than that for the fat-tailed
distribution.

Generally, regarding these papers [65, 66], Bariviera
et al. investigated the long memory of the Bitcoin mar-
ket using the Hurst exponent. Their research proves the
advantages of the DFA methods, basically, because it is
more robust and less sensitive to departures from condi-
tions of stationarity. They find that daily returns suffered a
regime switch. From 2011 until 2014 the Hurst exponent
was showing persistence behavior, whereas after 2014, it
equals to white noise, while daily volatility exhibits per-
sistent behavior during the period under study. Also, daily
volatility presents stronger fluctuations than in daily re-
turns. In particular, that volatility characteristic is the main
peculiarity of the Bitcoin market.

Kirichenko et al. [197] conducted a comparative cor-
relation and fractal analysis to time series of the Bitcoin
cryptocurrency rate and community activities in social net-
works associated with famous cryptocurrency. The re-
sults of their study show a significant correlation and sim-
ilar multifractal structure between the Bitcoin rate and the
community activities. Time series fractal analysis indi-
cated the presence of self-similar and multifractal prop-
erties.

As an example, Hong et al. [198] attempt to investigate
the time-varying long-term memory in the Bitcoin market
through a sliding window approach and by employing a
new efficiency index [199]. The daily dataset for the pe-
riod from 2010 to 2017 is utilized, and some interesting
findings emerge that:

• generalized Hurst exponents in the Bitcoin market are
above 0.5;

• long-term memory exists in the Bitcoin market;

• high degree of inefficiency ratio;

• Bitcoin market does not become more efficient over
time;

• rolling window approach can help to obtain more reli-
able results. Some conclusions for those who deal with
the cryptocurrency market were made.

The Al-Yahyaee et al. [200] paper provides the results
on the efficiency of the Bitcoin market compared to gold,
stock, and foreign exchange markets. By applying the MF-
DFA approach, researchers found that the long-memory
feature and MF of the Bitcoin market were more robust
and, therefore, more inefficient than the gold, stock, and
currency markets.

Gajardo et al. [201] applied MF-ADCCA to analyze
the presence and asymmetry of the cross-correlations be-
tween the major currency rates, Bitcoin, the DJIA, gold
price, and the oil crude market. They found that multifrac-
tality existed in every cross-correlation studied, and there
was an asymmetry in the cross-correlation exponents un-
der the different trends of the WTI, Gold, and the DJIA.
Bitcoin showed greater multifractal spectra than the other
currencies on its cross-correlation with the WTI, the Gold,
and the DJIA. Bitcoin presented a different relationship
between commodities and stock market indices, which had
to be taken into consideration when investing. The rea-
son is that over the years the currency was traded and over
time, it has earned the trust of the community.

The nonlinear patterns of the volatility of the seven
Bitcoin markets were investigated by Lahmiri et al.
[202]. Using four diverse distribution inferences: Nor-
mal, Student-t, Generalized Error, and t-Skewed distribu-
tion, they explored the fractional long-range dependence
in conjunction with the potential inherent stochasticity of
volatility time series. Their results testify to the existence
of long-range memory in Bitcoin market volatility, irre-
spectively of distributional inference. The entropy mea-
surement, which indicates a high degree of randomness in
the estimated series, shows the same. As Bitcoin markets
are highly disordered and risky, they cannot be considered
suitable for hedging purposes. Their exploration provides
strong evidence against the efficient market hypothesis.

Wei Zhang et al. [203] investigated the cross-
correlations of the return-volume relationship of the Bit-
coin market. In particular, they selected eight ex-
change rates whose trading volume accounts for more
than 98% market shared to synthesize Bitcoin indexes.
The empirical results based on MF-DCCA revealed that:
(1) return-volume relationship exhibited the nonlinear
dependencies and power-law cross-correlations; (2) all
cross-correlations were multifractal, and there were anti-
persistent behaviors of cross-correlation for q = 2; (3) the
price of small fluctuations was more persistent than that
of the volume, while the volume of larger fluctuations
was more anti-persistent; (4) the sliding window approach
showed that the cross-correlations of return-volume were
anti-persistent in the entire sample period.

Similarly to our article [204] where we applied the
MF-DFA method to Ukrainian and Russian stock markets,
we use it here to explore the multifractal property of Bit-
coin and construct reliable indicator for it.
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4.1 Multifractal detrended fluctuation analysis
(MF-DFA)

As an extension to the original DFA [145, 205, 206], the
multifractal approach [147, 207] estimates the Hurst expo-
nent of a time series at different scales. Based on a given
time series {x(i) | i = 1, . . . ,N}, the MF-DFA is described
as follows:

(i) The profile Y(i) (accumulation) is defined as:

Y(i) =

i∑
j=1

(g( j) − 〈g〉), (7)

where 〈g〉 stands for the average of returns.

(ii) The profile Y(i) is then divided into Ns ≡ int(N/s)
non-overlapping time segments of equal length s and
the local trend Y f it

v for each segment is calculated by
the least-square fit. Since the length of the time se-
ries is not always a multiple of s, a short period at
the end of the profile, which is less than the window
size, may be removed. For taking into account the re-
jected part and, therefore, to use all the elements of
the sequence, the above procedure is repeated start-
ing from the end of the profile. Therefore, the total
2Ns segments are obtained together, and the variance
is computed as

F2(v, s) =
1
s

s∑
i=1

[
Y((v − 1)s + i) − Y f it

v (i)
]2
,

for v = 1, . . . ,Ns (8)

and

F2(v, s) =
1
s

s∑
i=1

[
Y(N − (v − Ns)s + i) − Y f it

v (i)
]2
,

for v = Ns + 1, . . . , 2Ns

(9)

Various types of MF-DFA such as linear, quadratic,
or higher order polynomials can be used for elimi-
nating local trend in segment v; we use a cubic order
polynomial.

(iii) Considering the variability of time series and the
possible multiple scaling properties, we obtain the
qth order fluctuation function by averaging over all
segments:

Fq(s) =

 1
2Ns

2Ns∑
v=1

[
F2(v, s)

]q/2


1/q

. (10)

The index q can take any non-zero value. For q = 0,
Fq(s) is divergent and can be replaced by an expo-
nential of a logarithmic sum

F0(s) = exp

 1
4Ns

2Ns∑
v=1

ln F2(v, s)

 .

(iv) At least, we determine the scaling behavior of the
fluctuation function by analyzing log Fq(s) vs log s
graphs for each value of q. Here, F(s) is expected to
reveal power-law scaling

Fq(s) ∼ sh(q) (11)

for large n. The scaling exponent h(q) can be consid-
ered as generalized Hurst exponent. With q = 2 MF-
DFA transforms into standard DFA, and h(2) = H,
where H is the well-known Hurst exponent.

• h(2) ∈ [0.0, 0.5) → anti-persistency. The process
under study tends to decrease (increase) after a
previous increasing (decreasing);
• h(2) = 0.5 → uncorrelated process. The fluctua-

tions that depend on q tend to a random walk be-
havior [131];
• h(2) ∈ (0.5, 1.0] → persistency. If a process tends

to increase (decrease) for a some period T , then it
expected to continue to increase (decrease) for a
similar period of time;
• h(2) > 1.0 → nonstationary process, stronger

long-range correlations are present.

Those intervals with time intervals v will dominate
which variance F2(v, s) is large and q values are pos-
itive. Therefore, for positive values of q , h(q) de-
scribes the scaling behavior of time intervals with
large fluctuations. Large fluctuations are usually
characterized by smaller scaling coefficients of h(q)
for multifractal series. On the contrary, for nega-
tive values of q , time intervals with a small variance
F2(v, s) will dominate. Thus, h(q) will describe the
scaling behavior of time intervals with small fluctua-
tions.

(v) Another way of characterizing multifractality of a
time series is in terms of the multifractal scaling ex-
ponent τ(q) which is related to the generalized Hurst
exponent h(q) from the standard multifractal formal-
ism and given by [146]:

τ(q) = qh(q) − 1. (12)

Equation (12) reflects temporal structure of the time
series as a function of moments q, i.e., it represents
the scaling dependence of small fluctuations for neg-
ative values of and large fluctuations for positives
values. If (12) represents linear dependence of q, the
time series is said to be monofractal. Otherwise, if
(12) has a nonlinear dependence on q, then the series
is multifractal.

(vi) The different scalings are better described by the sin-
gularity spectrum f (α) which can be defined as:

α =
dτ(q)

dq
= h(q) + q

dh(q)
dq

,

f (α) = qα(q) − τ(q) = q2 dh(q)
dq

+ 1,
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with α – the Hölder exponent or singularity strength.
Following the methods described above, we present
results that reflect multifractal behavior of the Bit-
coin time series.

Figure 10a presents Fq(s) in the log-log plot. The
slope changes dependently on q , which indicates the mul-
tifractal property of a time series. As it was pointed out,
multifractality emerges not only because of temporal cor-
relation, but also because the Bitcoin returns distribution
turns out to be broad (fat-tailed) [147], and this distribu-
tion could contribute to the multifractality of the time se-
ries. The same dependence can be observed in the remain-
ing plots. The scaling exponent τ(q) remains nonlinear,
as well as generalized Hurst exponents that can serve as
evidence that Bitcoin exhibit multifractal property.

In the case of multifractals, the shape of the singularity
spectrum typically resembles an inverted parabola (see fig-
ure 10d); furthermore, the degree of complexity is straight-
forwardly quantified by the width of f (α) , simply defined
as ∆α = αmax − αmin , where αmax and αmin correspond
to the opposite ends of the α values as projected out by
different q-moments (equation (10)).

In the figure below we present the width of the spec-
trum of multifractality that changes over time accordingly
to the sliding window approach. The whole figure con-
sists of both a three-dimensional plot (singularity spec-
trum) and two-dimensional representation of its surface.

If the series exhibited a simple monofractal scaling be-
havior, the value of singularity spectrum f (α) would be a
constant. As can be observed, here our series exhibits a
simple multifractal scaling behavior, as the value of sin-
gularity spectrum f (α) changes dependently on α , i.e., it
exhibits different scalings at different scales. Moreover,
with the sliding window of the corresponding length, we
understand that at different time periods Bitcoin becomes
more or less complex. The value of ∆α gives a shred of
additional evidence on it.

As we can see from the presented results, the width of
the singularity spectrum after the crisis starts to increase,
which tells us that more violent price fluctuations are usu-
ally expected. With the decreasing width of the singularity
spectrum, the series is expected to hold the trend. As the
rule, it reaches its minimum before the collapse of the BTC
price.

5 Chaos-dynamical measures

Apparently random fluctuations in financial systems often
tend to exhibit varying levels of complexity and chaos. Re-
garding limited data, it becomes hard to define the bound-
aries of predictability of them. The analysis of such sys-
tems, the processes driving their dynamics chaos theory
has been considered in various fields such as economics,
finance, physics, and others [208–213]. Regarding the
analysis of Bitcoin dynamics, the knowledge about its
completely random and, at the same time, deterministic
processes can potentially explain fluctuations in time se-
ries of different nature. Considering the financial sector,

evidence on deterministic chaos, the knowledge of such
moments when two initially close trajectories start to di-
verge, and of the periods for which they will stay close
to each other would have important implications for reg-
ulators and traders, who will develop effective short-term
trading strategies. During the years, chaos theory has been
providing approaches to study some interesting properties
of time series. The most widespread are: correlation di-
mension, the BDS test, Kolmogorov entropy, Lyapunov
exponent, close returns test, etc. [214–217].

Endowing Bitcoin time series with the sliding window
approach and efficient methods of Lyapunov exponents,
and Levy alpha-stable distribution, we are going to reflect
its transition between chaotic and non-chaotic behavior.
Also, as it has been observed, such unstable events as mar-
ket crashes correspond to fat tails. Thus, the analysis of
such extreme events can be understood throughout Levy
alpha-stable distribution.

5.1 Lyapunov exponents

The evolution of the system exhibits sensitive dependence
on initial conditions. It means that initially close trajecto-
ries that evolve may rapidly diverge from each other and
have totally different outcomes. Accordingly, with small
uncertainties that amplify enormously quickly, long-term
predictions turn out to be impossible. On the other hand,
in a system with attraction points or stable points, the dis-
tance between them decreases asymptotically in time or
with the number of points, which tend to converge [218].

To present the idea more precisely, let’s consider two
consecutive points presented as x(t) and its initially close
neighbor as x(t) + δ(t), where δ(t) represents a tiny devia-
tion in time t, as presented in figure 13

As two initially close points disturbed by some event,
they start to diverge, and the distance between them grows
following exponential law:

‖δ(t)‖ ≈ ‖δ(0)‖ exp(λt) (13)

with λ that denotes the Lyapunov exponent (LE); δ(t) is the
distance between the reference point and its nearest neigh-
bor after t iterations; δ(0) is the initial distance between
the reference point and its nearest neighbor perturbed with
a small error at t = 0.

LE is a measure of the exponential rate of nearby tra-
jectories in the phase-space of a dynamical system. In
other words, it quantifies how fast converge or diverge
trajectories that start close to each other, quantifying the
strength of chaos in the system.

In such cases when our system n-dimensional, we
have as many LEs as the dimensions in it. To define
them, we consider the evolution of an infinitesimal sphere
of perturbed initial conditions. During its evolution, the
sphere will become distorted into an infinitesimal ellip-
soid. Defining the length of the ith principal axis as δi(t),
there are n-Lyapunov exponents given by:

‖δi(t)‖ ≈ ‖δi(0)‖ exp(λit), for i = 1, . . . , n. (14)

To identify whether the motion is periodic or chaotic,
especially, for large t it is recommended to contribute to
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(a) (b)

(c) (d)

Figure 10: The fluctuation function Fq(s) (a), multifractal scaling exponent τ(q) (b), h(q) versus q of the BTC return series
(c), and singularity spectrum f (α) (d) obtained from MF-DFA for BTC time series.

the largest Lyapunov exponent (LLE) among the others
of the n-dimensional dynamical system [219], as the di-
ameter of ellipsoid starts to be controlled by it. Exactly
the LLE is used to quantify the predictability of the sys-
tems, since exponential divergence means that in the sys-
tem where the initial difference was infinitesimally small,
start to rapidly lose its predictability behaving differently.
However, it should be noted that other exponents also con-
tain important information about the stability of the sys-
tem, including the directions of convergence and diver-
gence of the trajectories [220].

The existence of at least one positive LE is generally
seen as a strong indicator of chaos. Positive LE means that
initially similar, phase space trajectories that are sensitive
to initial conditions and diverge exponentially fast, char-
acterize chaotic behavior of the system. Negative LE re-
sponds to the cases when trajectories remain close to each
other, but it is not necessarily implied stability, and we
have to examine our system in more detail. Zero or very
close to zero exponents indicate that perturbations made
along the trajectory neither diverge nor converge.

With the great interest in LE, more and more methods
and proposals for their calculating have appeared. Unfor-
tunately, there has not been obtained accepted and univer-
sal method for estimating the whole spectrum of Lyapunov
exponents from a time series data. One of the most com-
mon and popular algorithms have been applied by Wolf
et al. [221], Sano and Sawada [222], and later improved
by Eckmann et al. [223], Rosenstein et al. [224], Parlitz
[225], and Balcerzak et al. [226]. Here, we followed the
methods proposed by Eckmann and Gao et al. [81, 227–
230] to compute the spectrum of Lyapunov exponents.
With Rosenstein’s algorithm, we compute only the LLE
from an experimental time series. As again suggested by
Eckmann et al. [231] one of the measures from recurrence
quantification analysis can be considered for estimation
of the LLE since it detects in a similar way highly non-
monotonic behavior.

With the high growth in computer science, computer
simulations of complex and chaotic systems become in-
creasingly appreciated. For at least two decades, with
development in numerical computations and quantitative
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Figure 11: Changes in the spectrum of multifractality in
time

analysis, no doubt left that chaos theory suggests the same
unstable fluctuation that may be as common as the extreme
events and critical transitions in financial markets. For in-
stance, Scheinkman and LeBaron [232] explored several
indications of nonlinear dynamic structure in stock market
returns. In their opinion, the weaknesses of such studies
are based on time series that are not long enough to reveal
the strange (fractal) attractors. On the other hand, the rea-
son may be chaos that comprises a class of signals inter-
mediate between regular periodic or quasiperiodic motions
and unpredictable, truly stochastic behavior [233]. Kulka-
rni [234] denotes that, probably, random financial fluctu-
ations often exhibit varying levels of fluctuations, chaos.
Kulkarni’s paper represents the efficiency of LE for the
complexity analysis of shortly limited data. The analysis
constitutes weakly chaotic behavior which alternates with
non-chaotic over the entire period of analysis.

Lyapunov exponents are a natural first choice in ex-
ploring and indicating such chaotic behaviors that occur
in it. They do not only classify the system but also tell
us the limits of predictability of the chaotic system [233].
During the last few decades, there was plenty of scientific
research that was related to chaos systems, chaos behavior
and, namely, to the LE. The earliest papers, in which au-
thors [235, 236] try to use LE to detect chaos dynamics
in financial time series, it is determined that linear, de-
terministic processes are characterized with negative LE
from nonlinear, chaotic processes with the largest expo-
nent (where it is positive). Besides, there is an article
[237] in which Gençay presents a methodology to com-
pute the empirical distributions of LE’s using a blockwise
bootstrap technique. This method provides a formal test
of the hypothesis that the LLE equals some hypothesizes
value, and can be used to test the system for the presence of
chaotic dynamics. Such methodology is particularly use-
ful in those cases where the largest exponent is positive but
very close to zero.

Sarkar and Chadha [238] in their paper investigated the
local fractal and chaotic properties of financial time series

by calculating two exponents, the Local Hurst Exponent
and LE. As was seen in their research, all calculations were
made with the algorithm of the sliding window where they
had considered two major financial indices of the US: the
DJIA and the S&P 500. Regarding the considered mea-
sures, they attempted to predict the major crashes that took
place in these markets.

Srinivasan et al. [239] have provided an explanation
and motivation for reconstructed phase spaces using the
methods of time delay and SVD embedding. They ex-
plained the meaning of LE and an algorithm for its esti-
mation for the corresponding chaotic, deterministic, and
periodic time series. From their presented results it is
seen that estimated positive and zero exponents converge
to the expected, documented values. Mastroeni and Vel-
lucci [240] obtained empirical results with the help of the
LLE and a determinism test that shows that commodity
and futures prices are representatives of a nonlinear de-
terministic, rather than stochastic systems. Similarly to
[238], Plakandaras et al. [241] measured the Hurst ex-
ponent and LE in the sliding window to focus on per-
sistence and chaotic behavior –– two prime characteris-
tics of uncertainty indices. For such purpose, they ana-
lyzed 72 popular indices constructed by forecasting mod-
els, text mining from news articles, and data mining from
monetary variables. More specifically, researchers found
that almost all uncertainty indices are persistent, while the
chaotic dynamics are detected only sporadically and for
certain indices during recessions of economic turbulence.
Authors of empirical analysis [242] in one of their chap-
ters explored whether the global markets are intrinsically
unstable where unpredictability, disorder, and discontinu-
ities are inherent and not aberrations. They investigated a
huge amount of literature and examine the possible non-
linear, particularly chaotic nature of the global stock mar-
kets. Their study explores the possible presence of chaos
in two phases: over the period for 1998-2005 and from
2006 to 2011. Over 30 indices had been investigated.
Empirical results showed that for the first phase, 29 in-
dices are deterministic. But 10 of them are found to be
non-chaotic. Estimated determinism factors for all the in-
dices are quite high, but Lyapunov exponent is presented
to be non-positive for at least 6 of them, where others are
chaotic.

As it is seen, chaos theory and its tools remain a huge
challenge for researchers of different fields of science and,
namely, in the financial industry, and, as it was suggested
in [241], the examination of persistent and chaos should be
a prerequisite step before using financial indices in eco-
nomic policy model. The world of Lyapunov exponents
remains a growing interest in their definition, numerical
methods, and application to various complex systems. In
summary, LLE allows us to establish [219]:

• transition region between stable and unstable;

• stability region;

• unstable region;

• chaotic region, including a possible transition between
unstable and chaotic.
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(a)

(b)

Figure 12: The comparison of the corresponding first (a) and second (b) Bitcoin time intervals with the width of the
multifractality spectrum measure

Figure 13: Divergence of two initially close trajectories in
a dynamical system [219]

5.1.1 Eckmann et al. method

Firstly, according to the approach [223], we need to re-
construct attractor dynamics from a single time series

{x(i) | i = 1, . . . ,N}with the embedding dimension dE , and
after this, we construct dE-dimensional orbit representing
the time evolution

~X (i) = [x(i), x(i + 1), . . . , x(i + (dE − 1))] ,
for i = 1, . . . ,N − dE + 1.

Then, we have to determine the most neighboring tra-
jectories with ~X(i):∥∥∥∥~X(i) − ~X( j)

∥∥∥∥ = max
0≤α≤dE−1

{|x(i + α) − x( j + α)|} . (15)

We sort the x(i) so that x(Π(1)) ≤ x(Π(2)) ≤ · · · ≤ x(Π(N))
and store the permutation Π, and its inverse Π−1. Then, we
try to find the neighbors of x(i) in dimension 1 by looking
at k = Π−1(i) and scan the x(Π(s)) for s = k + 1, k + 2, . . .
and k − 1, k − 2, . . . until x(Π(s)) − x(i) > r. For chosen
embedding dimension dE > 1, we select the value of s for
which further condition is true

|x(Π(s) + α) − x( j + α)| ≤ r, for α = 0, 1, . . . , dE − 1.
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After we embedded our system in dE dimensions, we
need to determine the dE × dE matrix Mi that will describe
time evolution of the vectors that surround trajectory ~X(i),
and how they map onto ~X(i + 1) state. The matrix Mi is
obtained by looking for neighbors

Mi(~X(i) − ~X( j)) ≈ ~X(i + 1) − ~X( j + 1). (16)

Nevertheless, the vectors ~X(i) − ~X( j) may not span
<dE . In this case, such indeterminacy may lead to spu-
rious exponents which confuse the analysis. To overcome
such obstacles, the projection of the trajectories is deter-
mined on a subspace of dimension dM ≤ dE . Thus, the
manifold on which the dynamics takes place corresponds
to the local dimension dM , where dE should be somewhere
larger than dM to avoid the presence of false neighbors
[130, 233]. Hence, the trajectory ~X(i) is associated with
a dM-dimensional vector

~X(i) = [x(i), x(i + τ), . . . , x(i + (dM − 1)τ)] =

= [x(i), x(i + τ), . . . , x(i + dE − 1)] ,
(17)

where τ = (dE − 1)/(dM − 1). When τ > 1, the condition
(16) is replaced by

Mi(~X(i) − ~X( j)) ≈ ~X(i + τ) − ~X( j + τ). (18)

The Mi is then defined by the linear least-square
method [243]. The last step of the algorithm is the clas-
sical QR matrix decomposition to find orthogonal matri-
ces Qi and upper-triangular matrices Ri with non-negative
diagonal elements such that

M1+iτQi = Qi+1Ri+1, for i = 0, 1, 2, . . . .

As it was proposed by Eckmann et al. [137, 223, 244],
in order to calculate dM Lyapunov exponents, the equation
for the kth Lyapunov exponent with K number of points on
the attractor, for which the Jacobian has been estimated,
the diagonal eigenvalues of the matrix Ri and the sampling
step ∆t is given by:

λk =
1
∆t

1
τ

1
K

K−1∑
i=0

ln (Ri)kk.

Thus, with linearizations by using the diagonal ele-
ments from the QR decomposition, we can calculate Lya-
punov exponents.

The calculation results for the LLE on the example of
BTC are presented in figure 14.

Let us pay attention to the behavior of λmax at moments
of the known failures noted in the list of crashes and criti-
cal events. Definitely, we can see that in the pre-crisis pe-
riod, the value of LLE decreases markedly, then increases
in the post-crisis period.

5.1.2 Rosenstein’s et al. method

Rosenstein’s algorithm [224] uses the delay embedding
method that reconstructs the most important features of a
multi-dimensional attractor into a single one-dimensional

time series of some finite size N. For the time series
{x(i) | i = 1, . . . ,N}, each delay embedded vector ~X(i) will
be presented similarly to the vector (17) with embedding
dimension dE and time delay τ. Then, in the reconstructed
trajectory, we initialize searching for in the state space for
the nearest neighbor ~X( j) of the trajectory ~X(i):

δi(0) = min
~X(i)

∥∥∥∥~X(i) − ~X( j)
∥∥∥∥ , for |i − j| > mean period,

where ‖ ‖ is the Euclidian norm, ~X( j) is the nearest neigh-
bor, and ~X(i) is the reference point.

From equation (13) we have already known that the
distance between states ~X(i) and ~X( j) will grow in time ac-
cordingly to a power law, where λ is a good approximation
of the LLE. For further estimations, we look at the loga-
rithm of the distance trajectory ln δi(k) ≈ λ(k · ∆t) + ln ci,
where δi(k) is the distance between ith pair of the nearest
neighbors defined in equation (18) after k time steps, ci

is the initial separation of them, and ∆t is the time inter-
val between measurements (sampling period of the time
series).

Further result of this algorithm is not a numerical
value, but a function of time

y(k,∆t) =
1
∆t

1
M

M∑
i=1

ln δi(k)

with the size of the reconstructed time series M = N −
(dE − 1)τ, and a set of approximately parallel lines δi(k)
whose slope roughly proportional to the LLE. Then, it is
proposed to be calculated as the angle of inclination of its
most linear section. Finding such a section turns out to be a
non-trivial task, and sometimes it is impossible to specify
such a section at all. Despite this problem, Rosenstein’s
method is easy for implementing and computing.

The LLE behavior for a window procedure with the
length of 250 days and the step size of 1 day is shown in
figure 15.

It can be seen that, as before, the LLE is also sensitive
to the crisis conditions of BTC.

5.1.3 Scale-dependent Lyapunov exponent (SDLE)

We briefly describe the idea and the formal foundations of
the method SDLE, introduce new measures of complexity,
and illustrate their effectiveness with the example of the
BTC index. Let us have a single observation conducted
at a discrete time interval ∆t in the form of a time series
{xi | i = 1, . . . ,N} where t = i · ∆t. After reconstructing the
phase space, let us consider the ensemble of trajectories.

Let us denote the initial distance between two close
trajectories δ(0), and their average distance at time t and t+
∆t as δ(t) and δ(t + ∆t) respectively. Note that the classical
algorithm for calculating the LLE (λmax) is based on the
assumption (13) and its estimation as (ln (δ(t) − δ(0)))/t.
Depending on δ(0), this property may not be true even for
truly chaotic systems. To calculate the SDLE, we check
whether the following inequality holds for a pair of vectors(
~X(i), ~X( j)

)
:

δ(k) ≤
∥∥∥∥~X(i) − ~X( j)

∥∥∥∥ ≤ δ(k) + ∆δ(k), for k = 1, 2, 3, . . . ,
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(a)

(b)

Figure 14: The dynamics of the LLE (λmax) with Eckmann et al. method within the time window of the length 250 days
and the time step of 1 day for the first (a) and second (b) periods. Exponents are calculated with dE = 3 and dM = 2

where δ(k) and ∆δ(k) are arbitrarily chosen small values of
distances, and

∥∥∥∥~X(i) − ~X( j)
∥∥∥∥ =

√√√ dE∑
w=1

(x(i + (w − 1)τ) − x( j + (w − 1)τ))2.

Geometrically, the last inequality defines a shell in
high-dimensional space. Next, we investigate the dynam-
ics of the same pairs of vectors

(
~X(i), ~X( j)

)
in the middle

of the shell and perform averaging over the ensemble by
indices i, j. Since the exponential or power functions are
of the greatest interest, we assume that logging and av-
eraging can be reversed. Finally, the following equation

looks like:

λ(δ(t)) =
〈

ln
∥∥∥∥~X(i + t + ∆t) − ~X( j + t + ∆t)

∥∥∥∥−
− ln

∥∥∥∥~X(i + t) − ~X( j + t)
∥∥∥∥〉/∆t,

with the sampling intervals t and ∆t; the angle brackets
correspond to the averaging over the indices i, j inside the
shell and

δ(t) =
∥∥∥∥~X(i + t) − ~X( j + t)

∥∥∥∥ =

=

√√√ dE∑
w=1

(x(i + (w − 1)τ + t) − x( j + (w − 1)τ + t))2.
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(a)

(b)

Figure 15: The dynamics of the LLE calculated with Rosenstein et. al. method within the time window length of 250
days and the time step of 1 day for first (a) and second (b) periods. Exponents are calculated with dE = 3 and τ = 2

Finally, note that

I = ln δ(t) = ln δ(0) +

∫ t

0
λ(δ(t))dt.

Time series, characterizing economic systems of
varying degrees of complexity, differ in magnitudes
∆λ = λmax − λmin, ∆δ = δmax − δmin, and I. As an example,
the integral measure I is calculated for a sliding window
of 400 days and step size of 1 day for the daily values of
the BTC index (see figure 16).

Like the previous LLE indicators, SLDE is also a lead-
ing indicator. However, its disadvantage is the impossibil-
ity of accurate calculations for small window sizes which
limits the possibilities of its usage.

5.2 Lévy alpha-stable distribution

Financial crises that regularly shake the world economy
are characterized by noticeable fluctuations in stock in-
dices, thereby causing noticeable changes in the statistical
distributions of empirical data [111, 245].

In 1900, Bachelier proposed the first model for the
stochastic process of returns – an uncorrelated random
walk with independent, identically Gaussian distributed
(i.i.d) random variables [246]. This model is natural if
one considers the return over a time scale ∆t to be the re-
sult of many independent “shocks”, which then lead by the
central limit theorem to a Gaussian distribution of returns
[246]. Some stylized facts of daily returns [247–249] re-
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(a)

(b)

Figure 16: The dynamics of the SDLE exponents within the time window of length 400 days and the time step of 1 day
for first (a) and second (b) periods

veal that distributions are leptokurtic and, therefore, Gaus-
sian distribution does not fit well to the data. Sornette and
Lux [250] pronounce that the distribution of such data may
be not only leptokurtic, but it can also be characterized by
fat tails [251–254]. Thus, it should belong to the class of
fat-tailed distributions. Formally, it is said that they follow
a power law. The emergence of power-law behavior in
price fluctuations is argued to be a consequence of under-
lying complex mechanisms, such as feedback effects and
correlations in financial markets [255–258]. Some theo-
ries associate this phenomenon with market impact and
the distribution of large investors [247, 259], while other
studies model the power-law behavior as a consequence of
limited information and the true value of companies [260].
Such property is a symptom of self-organization and com-
plexity which are prominent for economic systems. In
Chakraborty et al. [261] paper it was established that cur-
rencies of several frontiers that are outside of inverse cubic
law (with an exponent of α ' 3) belong to the Levy-stable

regime and are expected to be yet emerging and having
sudden large changes such as crashes and critical events,
while those of most developed exhibited inverse cubic law.

Recently, it has been reported that Bitcoin is becoming
more mature, following inverse cubic law [262–264]. Be-
sides, Stjepan Begušić et al. [265], motivated by the rise of
novel assets based on blockchain technology, presented a
detailed analysis of trade-level data of the BTC/USD pairs
from five large Bitcoin exchanges: Mt. Gox, BTC-e, Bit-
stamp, Bitfinex, and Kraken. They applied two estima-
tion methods and a resampling-based technique to statis-
tically validate if the main cryptocurrency follows power-
law behavior or not. Their study presented that the expo-
nent α lie within the range 2 < α < 2.5 that gives the
evidence that the cryptocurrencies market is much more
volatile than the stock market, and that Bitcoin returns ex-
hibit much heavier tails. Moreover, they find that such
a phenomenon is universal as such behavior holds across
multiple exchanges and tiny intervals. Their results imply
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that Bitcoin lies outside of the Levy-stable region which
provides the existence of a finite second moment, and a
basis for the usage of standard financial theories for port-
folio optimization and risk management.

In figure 17 the daily returns of Bitcoin and contrast
it with a sequence of i.i.d. Gaussian random variables are
presented.

(a)

(b)

Figure 17: Probability density function of BTC daily nor-
malized returns for the whole period (a). Cumulative dis-
tribution of the normalized BTC daily returns (b). Fits
yield values α = 1.94 ± 0.02

It is obvious that the distribution of returns has heavy
tails and in general case can be described as

P(g > x) ∼ x−(1+α), α ∈ (0, 2]. (19)

Figure 17 b it can be seen that Bitcoin exhibits the in-
verse cubic law.

In the analysis of cotton prices, Mandelbrot observed
that in addition to being non-Gaussian, the process of re-
turns shows another interesting property: “time scaling” –
that is, the distributions of returns for various choices of
∆t, ranging from 1 day up to 1 month have similar func-
tional forms [266]. Motivated by (i) pronounced tails, and
(ii) a stable functional form for different time scales, Man-
delbrot proposed that the distribution of returns is consis-
tent with a Levy stable distribution [266–268] – that is, the
returns can be modeled as a Levy stable process. Levy sta-
ble distributions arise from the generalization of the Cen-

tral Limit Theorem (CLT) to random variables that do not
have a finite second moment.

The CLT [269], which offers the fundamental justifi-
cation for approximate normality, points to the importance
of alpha-stable distribution: they are the only limiting laws
of normalized sums of independent, identically distributed
random variables. Gaussian distributions, the best-known
member of the stable family, have long been well under-
stood and widely used in all sorts of problems. However,
they do not allow for large fluctuations and are thus inad-
equate for modeling high variability. Non-Gaussian stable
models, on the other hand, do not share such limitations.
In general, the upper and lower tails of their distributions
decrease like a power function. In literature, this is of-
ten characterized as heavy or long tails. In the last two or
three decades, data that seem to fit the stable model has
been collected in fields as diverse as economics, telecom-
munications, hydrology, and physics [248].

Consequently, a probability model with a power tail
can be suitable for identifying processes with extreme
events. It was discovered that alpha-stable distributions fit
better than the Gaussian distribution to financial and spot
markets. It is still debatable whether Lévy stable distri-
bution is applicable since there is not enough theoretical
material, and there is not a universal analyzing method for
estimating parameters of Lévy stable distribution.

5.2.1 Lévy’s stable distribution properties

Lévy stable distribution being the generalization of the
CLT, became an addition to a wide class of distributions.
The term stable is such characteristic of distribution where
the shape (up to scale and shift) retains under addition:
if X, X1, X2, . . . , Xn are independent, identically distributed
random variables, then for every n

X1 + X2 + · · · + Xn
d
= cnX + dn (20)

for some constants cn > 0 and dn ∈ R, where X1, . . . , Xn

are independent, identical copies of X.
The class of all laws that satisfy condition (20) is pre-

sented by 4 parameters: α ∈ (0, 2] is the index of stabil-
ity or characteristic exponent where a smaller value of α
corresponds to more severe tails of the distribution. The
parameter β ∈ [−1, 1] is called the skewness parameter of
the law. If β = 0, the distribution is symmetric. In the
case when β > 0, it is skewed toward the right, otherwise
to the left. The last two parameters stand for the scale
γ ∈ [0,∞) and δ ∈ (−∞,∞) the location parameters of the
distribution. Since random variables X is characterized by
four parameters, we will denote α-stable distribution by
S (α, β, γ, δ) and write

X ∼ S (α, β, γ, δ). (21)

Lévy stable distributions cannot be defined in closed
form expression except few cases: the case of (α, β) =

(2, 0) corresponds to the Gaussian distribution, (α, β) =

(1, 0) to the Cauchy distribution. Instead, it is expressed
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in terms of their Fourier transforms or characteristic func-
tions (CF). If the density f (x) exists, CF of that density
can be expressed as

λ(k) = E exp(ikX) =

∫ ∞

−∞

exp(ikx) f (x)dx,

where k denotes the Fourier transformed variable. Thus,
the inverse Fourier transform

f (k) =
1

2π

∫ ∞

−∞

exp(−ikx)λ(k)dk

allows us to reconstruct probability density function with
a known characteristic function.

As we do not have any analytical expression for the
probability density of a random variable Xi, for Lévy sta-
ble distribution, if the variable xi follows S (α, β, γ, δ), the
CF can be expressed as [270]:

λ(k) =

exp iδk − γα|k|α
[
1 − iβsgn(k) tan( πα2 )

]
, (α , 1),

exp iδk − γ|k|
[
1 + iβsgn(k) 2

π
ln |k|

]
, (α = 1).

(22)

5.2.2 Methods for estimation of stable law parameters

There are numerous approaches that can estimate sta-
ble distribution parameters. Since the probability den-
sity functions are not always expressed in a closed form,
there are some challenges to overcome the analytic dif-
ficulties. Thus, there have been constructed a variety of
methods: the approximate maximum likelihood (ML) es-
timation [271, 272], quantiles method [273, 274], frac-
tional lower order moment method [275, 276], method of
log-cumulant [277], the logarithmic moment method [278]
and more. Unfortunately, some of those methods cannot
be applied due to computational problems associated with
a limited range of estimation, restricted range of parame-
ters, high computational costs, or requiring a large number
of data. However, several of them should be mentioned.

5.2.3 Maximum likelihood method

DuMouchel was the first to obtain approximate ML esti-
mates of α and γ (assuming δ = 0) [279]. A multino-
mial approximation to the likelihood function is used in
his approach. Under some additional assumptions on α̂
and the likelihood function, DuMouchel has shown the ob-
tained estimates to be consistent and asymptotically nor-
mal. However, the computational effort involved seems
considerable.

A direct method can be formulated, after Brorsen and
Yang [271], as follows. The standard symmetric proba-
bility density functions defined by Zolotariev [280] is pre-
sented as:

fα(x) =
α

π|1 − α|
x1/(α−1)×

×

∫ π/2

0
Uα(η, 0) exp−xα/(α−1)U(η, 0)dη, (23)

for α , 1, x > 0, where Uα is defined by:

Uα(η, η0) =

(
sinα(η − η0)

cos η

)α/(1−α) (cos η − α(η − η0)
cos η

)
(24)

and η0 is explained here [281]. Therefore, the parameters
α, γ, and δ can be estimated from the observations {xi | i =

1, 2, . . . ,N} by maximizing the log likelihood function:

N∑
i=1

log fα(zi) = n logα − n log(α − 1) +

+

N∑
i=1

log zi

α − 1
+

+

N∑
i=1

log
∫ π/2

0
Uα(η, 0) exp−zα/(α−1)

i Uα(η, 0)dη, (25)

where zi = |xi − δ|/γ.
To avoid the discontinuity and non-differentiability of

the symmetric α-stable density function at α = 1, alpha
is restricted to be greater than one. Caution must be used
when evaluating the integrals in equations (23) and (25),
since the integrals are singular at η = 0.

An obvious disadvantage of this method is that it is a
highly nonlinear optimization problem and no initializa-
tion and convergence analysis is available.

5.2.4 Quantiles methods

This method is focused on empirical quantiles, which has
been introduced by Fama and Roll, with the assumptions
that α > 1, β = 0, and δ = 0 [273]. However, it was much
more appreciated through McCulloch [274] after its exten-
sion to include asymmetric distribution for α ∈ [0.6, 2].

In order to quantify the four parameters of the stable
distribution, we consider N independent variables xi that
follow alpha-stable distribution (21) [274, 282]. Then, we
need to define five empirical quantiles of probability levels
5%, 25%, 50%, 75%, and 95%. Then we have to obtain
two intermediate quantities:v̂α =

Q̂0.95−Q̂0.05

Q̂0.75−Q̂0.25
, v̂β =

Q̂0.95+Q̂0.05−2Q̂0.05

Q̂0.95−Q̂0.05
,

α̂ = Ψ1(v̂α, v̂β), β̂ = Ψ2(v̂α, v̂β),

where Q̂p(p = 0.05, 0.25, 0.5, 0.75, 0.95) is the corre-
sponding sample data with which quantile is calculated,
and Ψ1 with Ψ are the interpolating functions the values
of which can be found in Table I-IV by McCulloch [274].
Further, the scale parameter is given by:

γ̂ =
Q̂0.75 − Q̂0.25

Ψ3(α̂, β̂)
,

where Psi3(α̂, β̂) is given in Table V [274]. For simplicity
of the location parameter, we can define the variable which
is predefined in the following form:

ξ =

δ + βγ tan πα
2 , if α , 1,

δ, if α = 1.
(26)
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In consistence with the corresponding parameter ξ
which can be estimated by ξ̂ = Q̂0.5 + γ̂Ψ5( ˆα, β) (Ψ5 can
be obtained through linear interpolation according to Table
VII [274]), the location parameter δ is given by:

δ̂ = ξ̂ + β̂γ̂tan
πα̂

2
.

5.2.5 Empirical characteristic function method

Analyzing data, we often assume that they are ergodic
[283]. In general, if random variables are ergodic with
the integrable function f (x), and the measure ρ(x)dx in
the space M, then the following equation holds [284]:

lim
N→∞

1
N

N∑
i=1

exp(ikxi) =

∫ ∞

−∞

exp(ikx)ρ(x)dx. (27)

Then, to consider characteristic functions, equation
(27) comes out to be the following ergodic equality [284]:

lim
N→∞

1
N

N∑
i=1

exp(ikxi) =

∫ ∞

−∞

exp(ikx) f (x)dx (28)

for which we have

λ̂(k) = lim
N→∞

1
N

N∑
i=1

exp(ikxi). (29)

This assumption allows us to empirically obtain the
probability distribution. Hence, the empirical character-
istic function λN(k) can be calculated as

λ̂N(k) =
1
N

N∑
i=1

exp(ikxi). (30)

Then, according to Koutrouvelis’ [270, 285] regres-
sion type from (22) it can be derived that

log(− log(|λ(k)|2)) = log(2γα) + α log(k). (31)

The imaginary and real parts of λ(k) are given byλI(k) = exp(−|γk|α) · i sin[δk − |γk|αβsgn(k)ω(k, α)],
λR(k) = exp(−|γk|α) · cos[δk − |γk|αβsgn(k)ω(k, α)],

(32)
where

ω(k, α) =

tan πα
2 , α , 1,

2
π

ln |k|, α = 1.

Suppose Υ := arctan(λI(k)/λR(k)). Then, in the condi-
tion α , 1, the last two equations lead, apart from consid-
erations of principal values, to

Υ(k) = δk − βγα tan(
πα

2
)sgn(k)|k|α. (33)

Equation (31) depends only on α and γ, and it suggests
that we estimate these parameters by regressing

y = log(− log |λN(k)|2)

on ω = log(k) in the model

yl = m + αθl + εl, for l = 1, . . . , L, (34)

where yl = log(− log(λ̂(kl))2), m = log(2γα), θl = log(kl),
and εl responds for an error term. The proposed real data
set for L (see Koutrouvelis [270], Table I) is given by kl =

πl/25 (l = 1, . . . , L).
With estimated and fixed parameters α and γ, the sym-

metric parameter β and location parameter δ can be ob-
tained by linear regression estimation

zq = δkq − βγ
α tan(

πα

2
)sgn(kq)|kq|

α + vq,

for q = 1, . . . ,Q, (35)

where zq = ΥN(kq) + πlN(kq), vl denotes an error term, and
the proposed real data set for Q (see Koutrouvelis [270],
Table II) is kq = πq/50 (q = 1, . . . ,Q).

5.2.6 Related studies and corresponding results

Recently, the use of dynamic indicators, precursors of
crashes in stock markets using the parameters of a α-stable
distribution was proposed by us in the papers [76, 77, 286]
and later repeated in a recent paper [30]. From the data
above, we estimate the parameters α and β of the stable
distribution that the best describes the empirical returns.
Figure 18 shows the dynamics of the parameter α as a
more informative indicator.

From the figure 18 we can see that our parameters start
to decrease in crisis states. Such abnormal behavior can
serve as an indicator or precursor of crashes and critical
states.

6 Recurrence analysis

In 1890 the mathematical foundations of recurrence were
introduced by Henri Poincaré, resulting in the Poincaré
recurrence theorem [287]. This theorem states that certain
systems will return to their arbitrarily close, or exactly the
same initial states after a sufficiently long but finite time.
Such property in the case of deterministic behavior of the
system allows us to make conclusions regarding its future
development.

6.1 Recurrence plot

Recurrence plot (RP) have been introduced to study dy-
namics and recurrence states of complex systems. When
we create RP, at first, from recorded time series we recon-
struct phase-space trajectory. Then, according to Eckmann
et al. [231], we consider a trajectory ~X(i) on the recon-
structed trajectory. The recurrence plot is an array of dots
in a N × N matrix, where dot is placed at (i, j) whenever
~X( j) is sufficiently close to ~X(i), and both axes are time
axes which mathematically can be expressed as

Ri j = H(ε −
∥∥∥∥~X(i) − ~X( j)

∥∥∥∥), for i, j = 1, . . . ,N, (36)
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(a)

(b)

Figure 18: The Bitcoin time series and estimated for them parameter α. Vertical arrows indicate crashes and critical events

where ‖ ‖ is a norm (representing the spatial distance be-
tween the states at times i and j); ε is a predefined recur-
rence threshold, and H is the Heaviside function. As a
result, the matrix captures a total of N2 binary similarity
values. A synthetic example is presented in figure 19.

Typically an Lp-norm is applied to determine the pair-
wise similarity between two vectors. Accordingly to Web-
ber and Zbilut [139], there are such candidates that can
serve as a distance measure:

• the L1-norm (Manhattan distance);

• the L2-norm (Manhattan distance);

• the L∞-norm (Manhattan distance);

In accordance with our results, Maximum distance
seems to be a suitable choice. It is often used as it is inde-
pendent of the phase space dimension, easy to calculate,
and allows some analytical expression [288–290].

Also, as it can be seen from equation (36), the simi-
larity between vectors is determined by a threshold ε. The

choice of ε > 0 ensures that all vectors that lie within this
radius are similar to each other, and that dissimilarity up
to a certain error is permitted [287].

The fixed radius for recurrent states is the com-
monly used condition, which leads to equally sized ε-
neighborhoods. The shape in which neighborhoods lie
is determined by the distance metric. Applying the fixed
threshold with the distance metric, we define recurrence
matrices that are symmetric along the middle diagonal.
The self-similarity of the multi-dimensional vectors re-
flects in the middle diagonal which is commonly referred
to as line of identity (LOI). In contrast, it is not guaran-
teed that a recurrence matrix is symmetric, if the condition
of fixed number of nearest neighbors is applied. For spe-
cific purposes (e.g., quantification of recurrences), it can
be useful to exclude the LOI from the RP, as the trivial
recurrence of a state with itself might not be of interest
[291].
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(a)

(b)

Figure 19: Phase portrait (a) and corresponding RP (b) for
BTC

6.1.1 Recurrence plots and their structures

The visualization of trajectories and hidden patterns of the
systems is the “destiny” of RP [291, 292].

The dots within RP, representing the time evolution
of the trajectories, exhibit characteristic large-scale and
small-scale patterns. Large-scale patterns of RP can be
classified as homogeneous, periodic, drift, and disrupted
[289, 293, 294]:

• Homogeneous typify behavior of autonomous and sta-
tionary systems, which consist of a large number of re-
currence points that are homogeneously distributed (re-
laxation times are short).

• Periodic represents long, uninterrupted, and diagonally
oriented structures that represent which indicate peri-
odic behavior. These lines are usually distributed reg-
ularly.

• Paling or darkening from the LOI to the outer corners in
RP is characteristic of drift.

• Disrupted distribution of recurrence points may serve as
an indicator of drastic changes as well as extreme events
in the system dynamics. In these cases, RP can be used
to find and assess extreme and rare events by scoring the
frequency of their repeats.

6.1.2 Recurrence quantification analysis

For a qualitative description of the system, the graphic rep-
resentation of the system suits perfectly. However, the
main disadvantage of graphical representation is that it
forces users to subjectively intuit and interpret patterns
and structures presented within the recurrence plot. Also,
with plots’ increasing size, they can be hardly depicted on
graphical display as a whole. As a result, we need to work
with separated parts of the original plot. Analysis in such a
way may create new defects that which should distort ob-
jectivity of the observed patterns and lead to incorrect in-
terpretations. To overcome such limitation and spread an
objective assessment among observers, in the early 1990s
by Webber and Zbilut were introduced definitions and pro-
cedures to quantify RP’s complexity, and later, it has been
extended by Marwan et al. [294–296].

The small-scale clusters can represent a combination
of isolated dots (chance recurrences). Similar evolution at
different periods in time or in reverse temporal order will
present diagonal lines (deterministic structures) as well as
vertical/horizontal lines to inscribe laminar states (inter-
mittency) or systems that paused at singularities. For the
quantitative description of the system, such small-scale
clusters serve the base of the recurrence quantification
analysis (RQA).

Usually, first acquaintance with classical RQA starts
with recurrence point density, or, as it is known, recurrence
rate (RR):

RR =
1

N2

N∑
i, j=1

Ri, j.

It enumerates the probability that any state of the sys-
tem will recur. It is the simplest measure that is computed
by taking the number of nearest points forming short,
spanning row and columns of the recurrent plot. It sum-
marizes them and divides by the number of possible points
in the recurrence matrix of size N2.

The remaining measure relies on the frequency distri-
bution of line structures in the RP. First, we consider the
histogram of the length of the diagonal structures in the
RP

P(l) =

N∑
i, j=1

(1 − Ri−1, j−1) · (1 − Ri+l, j+l) ·
l−1∏
k=0

Ri+k, j+k

 .
The fraction recurrence points on the recurrence plots

that form line segments of minimal length µ parallel to the
matrix diagonal is the measure of determinism (DET):

DET (µ) =

∑N
l=µ l · P(l)∑N

i, j=1 Ri, j
=

∑N
l=µ l · P(l)∑N
l=1 l · P(l)

.
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Systems that exhibit deterministic dynamics are
mainly characterized by diagonal lines. Long diagonal
lines indicate periodic signals, but short diagonal lines
stand for chaotic behavior. Regarding the quantitative
analysis, typically, only the lines with minimal length
µ = 2 are considered. If µ = 1, then DET and RR are
identical. For some systems, DET becomes more reliable
if µ > 2. Here, µ serves as a filter, excluding the shorter
lines. However, it should be noted that too large µ may
spoil the histogram P(l) and thus the reliability of DET.

The results of calculations of window dynamics of the
considered recurrence measures are presented in Figure
20. RR and DET are calculated for local time series of
50 days and a step of 1 day. In this case, the beginning of
a crash or critical event is at point 100.

It is evident that the two recurrent measures during ab-
normal periods decrease long before the actual anomaly.
The complex system becomes less recurrent and less de-
terministic which is logical in the periods approaching crit-
ical phenomena. And, consequently, RR and DET can be
used as precursors of critical and crash phenomena.

6.1.3 Chaos recurrent measures

The corresponding measure of entropy is related to the re-
currence properties that may be peculiar for the nonlinear
complex system and important class of recurrence quanti-
fiers are those that try to capture the level of complexity of
a signal [78, 84, 297]. In accordance with this study, the
entropy diagonal line histogram (DLEn) is of the greatest
interest which uses the Shannon entropy of the distribution
of diagonal lines P(l) to determine the complexity of the
diagonal structures within the recurrence plot. One of the
most know quantitative indicators of the recurrence analy-
sis can be defined as:

DLEn = −

l=lmax∑
l=lmin

p(l) ln p(l)

and
p(l) =

P(l)∑N
l=lmin

P(l)
,

where p(l) captures the probability that a diagonal line has
exactly length l, and DLEn reflects the complexity of de-
terministic structure in the system. Further calculations
were provided and presented in figure 21 for both Bitcoin
time series.

However, as follows from the analysis of the entropy
indicators, the results may differ for different data prepara-
tion. Further, we take into account two types of Shannon
entropy-based approaches: recurrence period density en-
tropy (RPDEn) and recurrence entropy (RecEn).

The RPDEn is the quantitative measure of the recur-
rence analysis that is useful for characterizing the period-
icity or absolutely random processes in the time series.
It is useful for quantifying the degree of repetitiveness
[298, 299]. Considering embedded data point ~X(i) from
the phase space and suitable threshold ε in dE-dimensional
space. Then the trajectory is followed forward in time un-
til it has left the corresponding threshold ε. Subsequently,

the time j at which the trajectory first returns to this ball
and the period T of previous and current states is recorded.
The procedure is repeated for all states of the RPs, form-
ing a histogram of recurrence times R(T ). The histogram
is then normalized to give the recurrence time probability
density:

P(Ti) =
R(Ti)∑Tmax

i=1 R(Ti)
,

where Tmax = max {Ti}. The normalized entropy of the
obtained density can be defined as:

RPDEn =
−

∑Tmax
i=1 P(Ti) ln P(Ti)

ln Tmax
. (37)

In fact, based on the length of the sequences of neigh-
boring points in the phase space: the more points are
neighborhoods, the lower the value of the entropy accord-
ing to equation (37). The comparing of RPDEn and Bit-
coin’s critical states can be seen in figure 22.

However, recent articles [297, 300] present a slightly
different technique for calculating recurrent entropy using
a novel way to extract information from the recurrence
matrix. To properly define it, we need to define the mi-
crostates F(ε) for the RP that are associated with features
of the dynamics of the time series. Selecting the appropri-
ate metric and using the Heaviside function, we evaluate
the matrices of dimensions N × N that are sampled from
the RP. The total number of microstates for a given N is
Nms = 2N2

. The microstates are populated by N random
samples obtained from the recurrence matrix such that:

N =
∑Nms

i=1
ni

with ni representing the number of times that a microstate
i is observed. The probability of occurrence of the related
microstate i can be obtained as:

pi = ni ·
(
N
)−1

.

The RecEn of the RP associated with the probability
distribution of the corresponding microstates is given by
the following equation:

RecEn =

Nms∑
i=1

pi ln pi. (38)

In figure 23 we can see the performance of RecEn ac-
cordingly to the described above method.

A vertical line of length l starting from a dot (i, j)
means that the trajectory starting from ~X( j) remains close
to ~X(i) during l − 1 time steps. A diagonal black line of
length l starting from a dot i, j means that trajectories start-
ing from ~X(i) and ~X( j) remain close during l−1 time steps,
thus these lines are related to the divergence of the trajec-
tory segments. The average diagonal line length

Lmean =

∑N
l=lmin

l · P(l)∑N
l=lmin

P(l)

is the average time that two segments of the trajectory are
close to each other and can be interpreted as the mean pre-
diction time. Here, P(l) is a histogram of diagonal lines of
length l.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 20: Dynamics of RR and DET for crashes (a, b, e, f) and critical events (c, d, g, h)

Another measure (Lmax) considers the length of the
longest diagonal line found in the RP. In other words, it
means the maximum time that two segments of the trajec-

tory are close to each other, and the following equation can
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(a)

(b)

Figure 21: DLEn dynamics along with first (a) and second (b) periods of the entire time series of Bitcoin

be defined as

Lmax = max ({li | i = 1, . . . ,Nl}) ,

where Nl =
∑

l>lmin
P(l) is the total number of diagonal

lines.
Respectively, the inverse of Lmax characterizes the ex-

ponential divergence of the phase space trajectory [301,
302]. Faster the trajectory segments diverge, shorter are
the diagonal lines and higher is the measure of divergence
(DIV). It is given by the following equation:

DIV = 1/Lmax.

Therefore, the measure of DIV , according to Eckmann
[231], can be used to estimate the largest positive Lya-
punov exponent. The comparative dynamics of the mea-
sure of divergence and BTC time series are presented in
figure 24.

A comparative analysis of the measures under con-
sideration revealed an obvious advantage of the recursive

measure. In addition to the smoothness of the measure it-
self, it can be calculated for windows of small sizes, which
leads to inaccurate or incorrect results for other methods.

7 Irreversibility

Complex systems are open systems that exchange energy,
matter, and information with the environment. Investigat-
ing complex systems in the natural sciences, Prigogine
made a fundamental generalization, indicating the need
for consideration of the phenomena of irreversibility and
non-equilibrium as principles of selection of space-time
structures that are implemented in practice [303]. Later
it became clear that this generalization extends to com-
plex systems of another nature: social, economic, biomed-
ical, etc. [304]. Prigogine believed that the most important
changes in the modern scientific revolution are related to
the removal of previous restrictions in the scientific under-
standing of time. The nonlinear world is characterized by
features of temporality, i.e., irreversibility and transience
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(a)

(b)

Figure 22: RPDEn dynamics along with first (a) and second (b) periods of the entire time series of Bitcoin

of processes and phenomena. Self-organization is consid-
ered as a spontaneous process of formation of integrating
complex systems. It is due to the ambiguity of choice at
bifurcation points that time in theories of self-organization
becomes truly irreversible. In contrast to linear dynamic
theories – classical, relativistic, quantum (where time is
reversed), in the thermodynamics of dissipative structures
created by Prigogine, time ceases to be a simple parameter
and becomes a concept that expresses the pace and direc-
tion of events.

Thus, the irreversibility of time is a fundamental prop-
erty of non-equilibrium dissipative systems, and its loss
may indicate the development of destructive processes
[107, 304].

A stationary process X is called statistically inverse
in time, if for any N, the series {x(i) | i = 1, . . . ,N} and
{x(i) | i = N, . . . , 1} will have the same compatible proba-
bility distributions [305]. The irreversibility of time series
indicates the presence of nonlinearities in the dynamics
of a system far from equilibrium, including non-Gaussian

random processes and dissipative chaos. Since the defini-
tion of the irreversibility of the time series is formal, there
is no a priori optimal algorithm for its quantification. Sev-
eral methods for measuring the irreversibility of time have
been proposed [107, 304, 306–312].

In the first group of methods, the symbolization of time
series is performed, and then the analysis is performed by
statistical comparison of the appearance of a string of sym-
bols in the forward and reverse directions [307].

Sometimes additional compression algorithms are
used [306]. An important step for this group is the sym-
bolization – the conversion of the time series into a char-
acter series requires additional special information (e.g.,
division of the range or size of the alphabet) and, there-
fore, contains the problem of the algorithm’s dependence
on these additional parameters. The second problem arises
when considering the large-scale invariance of complex
signals. Since the procedures of typical symbolizations are
local, taking into account different scales can cause some
difficulties [107].
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(b)

Figure 23: RecEn dynamics along with first (a) and second (b) periods of the entire time series of Bitcoin

Another group of methods in formalizing the index of
irreversibility does not use the symbolization procedure
but is based on the use of real values of the time series
or returns.

One of such approaches is based on the asymmetry of
the distribution of points in the Poincare map, built on the
basis of the values of the analyzed time series [309, 312].

Recently, a fundamentally new approach to measuring
the irreversibility of time series has been proposed, which
uses the methods of complex network theory [308, 311]
and which combines two tools: the algorithm for visibil-
ity of time series recovery into a complex network and
the Kullbak-Leibler divergence algorithm [311]. The first
forms a directional network according to the geometric cri-
terion. The degree of irreversibility of the series is then
estimated by the Kullbak-Leibler divergence (i.e., the res-
olution) between the distribution of the input and output
stages of the associated count. This method is computa-
tionally efficient, does not require any special symboliza-

tion of the process, and, according to the authors, naturally
takes into account multiscale.

In this study, we consider the irreversibility of time as
a measure of the complexity of the system.

Let us consider non-reversible measures of complexity
based on the construction and analysis of ordinal permuta-
tion patterns.

7.1 Time series irreversibility measure based on
permutation patterns

The concept of permutation patterns (PP) was introduced
by Bandt and Pompe [127]. PP is based on the idea of
finding the order patterns that result in sorted (ascending)
sub-sequences, and of then studying the probability dis-
tribution of these patterns. Authors of the work [313]
introduce a new method, based on permutation entropy
[127, 314, 315], to evaluate irreversibility of time series at
various temporal scales. The proposed one presents vari-
ous advantages: (1) it has no free parameters other than the
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(b)

Figure 24: The measure of divergence along with first (a) and second (b) periods for BTC time series

embedding dimension of the permutation entropy; (2) sim-
ilar to visibility graph methods [311, 316], it is temporally
local, and therefore allows assessing fluctuations; (3) as-
sessing significance is straightforward, and does not rely
on scaling arguments as in visibility graph methods; and
(4) it has a convergence speed advantage over visibility
graph methods graph methods. They also demonstrated
how the proposed approach can help elucidate the com-
plex irreversibility dynamics of financial time series, rep-
resenting 30 major European stocks and 12 world indices
[313] and gait analysis on late stages of neurodegenera-
tive dementias [317]. This technique was also used to
analyze the irreversibility of time series in ecology (the
time series of lynx abundance), epidemiology (dengue
prevalence), economy (the S&P price-index series), neu-
roscience (electroencephalographic data from an epileptic
patient) [318, 319], and heart rate [320].

The idea of irreversibility analysis implies that regard-
ing each permutation pattern that can be obtained follow-
ing procedure from section 3.2.4, there will be reversed
one under the operation of time reversal. Example, if for
an embedded vector ~X, a pattern πi is found, reversing

time series will necessary imply πr
i . As an example, let

us consider a fragment of BTC time series for the period
21.01.2021-31.01.2021:

Xd = [30825.70, 33005.76, 32067.64, 32289.38, 32366.39]

and

Xr = [32366.39, 32289.38, 32067.64, 33005.76, 30825.70] .

According to mentioned steps, we will construct em-
bedded matrix of overlapping column vectors with dE = 3
and τ = 1. Our sampled data is partitioned as follows:

Xd
t (dE , τ) =

30825.70 33005.76 32067.64
33005.76 32067.64 32289.38
32067.64 32289.38 32366.39

 (39)

and for Xr
t (dE , τ):32366.39 32289.38 32067.64

32289.38 32067.64 33005.76
32067.64 33005.76 30825.70

 . (40)

After it, our time-delayed vectors are mapped to per-
mutations or ordinal patterns of the same size. Our exam-
ple consists 3! = 6 different ordinal patterns in total. They
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can be paired together, such that each pattern composing a
pair is the time reversal of the other. For instance:

{0, 1, 2} ↔ {2, 1, 0}
{1, 0, 2} ↔ {2, 0, 1}
{1, 2, 0} ↔ {0, 2, 1}

with↔ representing a time reversal transformation.
As an example, the corresponding permu-

tation of the first column from (39) would be
φ(30825.70, 33005.76, 32067.64]) = 021 since we
arrange values in ascending order and replace them by
their ordinal ranking from original placement. Therefore,
after mapping from the time-series data into a series of
permutations (φ : RdE → S dE ), we obtain the ordinal
matrices first of all for initial time series:0 1 0

2 2 1
1 0 2

 . (41)

and its reversed version:2 1 1
1 0 2
0 2 0

 . (42)

Finally, the probability of each pattern in initial and
reversed time series is calculated as

p(π) =
#{t ≤ N − (dE − 1)τ, φ(XdE ,τ

t ) = π}

N − (dE − 1)τ
, (43)

forming the probability distributions
Pd =

[
p0,1,2, p2,1,0, p1,0,2, p2,0,1, p1,2,0, p0,2,1

]
and

Pr =
[
p2,1,0, p0,1,2, p2,0,1, p1,0,2, p0,2,1, p1,2,0

]
. Using

the Kullback-Leibler divergence, we can define the degree
of irreversibility in a time series:

DKL =

dE !∑
i=1

Pd(i) log
Pd(i)
Pr(i)

. (44)

If Pd u Pr, the time series is presented to be reversible,
thus yielding a DKL u 0 and vise versa. Estimating vary-
ing bitcoin’s irreversibility according to (44) with time
window of 100 days and time step of 1 day, we obtain
following results.

The figures show that time series are significantly ir-
reversible. When moving the original rows of their irre-
versible disappears. Draws attention and noticeable un-
evenness introduced measures, which correlate with the
fluctuations of the input time series. Identifying signifi-
cant changes in the time series and comparing them with
the corresponding changes of non-reversible measures of
complexity, it is possible to construct the corresponding
indicators.

8 Single and multiplex networks

The new interdisciplinary study of complex systems,
known as the complex networks theory, laid the founda-
tion for a new network paradigm of synergetics [321]. In

the framework of the complexity paradigm, it became ap-
parent that we should move from well-studied systems and
processes, taking into account the minimal number of new
entities that are characteristic of the social sciences or the
humanities. Apparently, one of these entities is the bonds,
that is, what characterizes the interaction of the elements
that are part of the system, that makes parts of the whole.
The set of these links is called the network. Investigat-
ing networks, we take into account their topology, statis-
tical properties, the distribution of weights of individual
nodes and edges, the effects of information dissemination,
robustness, etc. [1, 4, 322, 323]. Complex networks in-
clude electrical, transport, information, social, economic,
biological, neural, and other networks [3, 324, 325]. The
network paradigm has become dominant in the study of
complex systems since it allows you to enter new quantita-
tive measures of complexity not existing for the time series
[326]. Moreover, the network paradigm provides adequate
support for the core concepts of Industry 4.0 [321].

Previously, we introduced various quantitative mea-
sures of complexity for individual time series [57, 327–
329]. However, except a graph for an individual time se-
ries, it is necessary to take into account the interconnection
interaction, which can be realized within the framework of
different models [330]. We will consider it by simulating
so-called multiplex networks, the features of which are re-
duced to a fixed number of nodes in each layer, but they
are linked by different bonds [330].

Recently, the first papers using the spectral and topo-
logical characteristics of dynamic systems presented as
networks have appeared. Thus, in [331], it has been in-
vestigated universal and non-universal allometric scaling
behaviors in the visibility graphs of 30 world stock mar-
ket indices. It has been established that the nature of such
behavior is due to the returns distribution that is character-
ized by fat-tails, the nonlinear long-term correlation, and a
coupling effect between the set of influential factors.

Birch [332] compared the mean degree value and clus-
tering coefficient for a group of companies included in the
DAX 30 index basket. He observed the companies from
the DAX 30 index for two time periods: the first from the
beginning of 2008 through the end of 2009 and the sec-
ond from the beginning of 2010 up to the end of 2011 as
these include the dates – a period of crisis (7th October
2008 – 31st December 2008) and a period of recovery (7th
May 2010 – 3rd August 2010). Contrary to expectations,
the results differed little from the relatively low accuracy
of the horizontal visibility graph procedure compared to
visibility graph.

Wand and Wei [333] collected from the Chinese stock
market the data of 2571 stock companies in 2012 and the
data of 2578 stock companies in 2013. Every year, data
of these stock companies are randomly arranged. These
data are then converted into some complex networks based
on the visibility graph method. For these complex net-
works, degree distribution and clustering coefficient are
considered. These results show that complex networks
have power-law distribution and small-world properties.

Yan and Serooskerken [334] construct an indicator to
measure the magnitude of the super-exponential growth of
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(b)

Figure 25: Dynamics of permutation-based time irreversibility measure for the first (a) and second (b) periods

stock prices, by measuring the degree of the price network,
generated from the price time series. Twelve major inter-
national stock indices have been investigated. The work
results show that this new indicator has strong predictive
power for financial extremes, both peaks, and troughs. By
varying the model parameters, the authors show the pre-
dictive power is very robust. The new indicator has a bet-
ter performance than the indicator based on a well-known
model of log-periodic oscillations of Sornette [335].

Authors of another paper [336] analyze high-
frequency data from the S&P 500 via the horizontal visi-
bility graph method and find that all major crises that have
taken place worldwide for the last twenty years, affected
significantly the behavior of the price-index. Nevertheless,
they observe that each of those crises impacted the index
in a different way and magnitude. These results suggest
that the predictability of the price-index series increases
during periods of crisis.

In the paper [337] Serafino et al. studied the visibility
graphs built from the time series of several stock market

indices. They proposed a validation procedure for each
link of these graphs against a null hypothesis derived from
ARCH-type modeling of such series. Building on this
framework made it possible to devise a market indicator
that turned out to be highly correlated and even predictive
of financial instability periods.

Francés and Carles [25] examined the characteristics
of the daily price series of 16 different cryptocurrencies
between July 2017 and February 2018. Using Minimum
Spanning Tree (MST) and hierarchical analysis by den-
drograms that were obtained from Pearson correlation be-
tween daily returns, they visualized and identified a high
correlation between price movements of all the currencies.
From the obtained results, it is seen that the most inter-
connected with all cryptocurrencies is Ethereum, while
Bitcoin standed for one of its branches. They concluded
that Ethereum might be a benchmark currency in the cryp-
tocurrency market, rather than Bitcoin.

Coquide et al. [338] constructed the Google matri-
ces of bitcoin transaction for all year quarters from the
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very start of it till April 10, 2013. From PageRank and
CheiRank probabilities that serve as analogues to trade im-
port and export, they determined the dimensionless trade
balance of each user and analyzed the direct and hidden
(indirect) links between top PageRank users of BCN using
the recently developed reduced Google matrix algorithm.
They modeled the contagion propagation of the transac-
tions assuming that a user goes bankrupt if its dimensional
balance exceeds a certain bankruptcy threshold k. Their
results present that the phase transition neighboring with
the critical threshold k = kc ≈ 0.1 below which almost
all users remain safe. For k > 0.55 almost all users re-
main safe, and for 0.1 < k > 0.55 more than a half of
users go bankrupt. Moreover, their result present that even
being not very close to the critical threshold kc ≈ 0.1,
almost all top PageRank and CheiRank users rapidly be-
come bankrupts that give the evidence about their strong
interconnectivity. With the reduced Google matrix algo-
rithm, they presented the most preferable interlinks of the
most valuable users.

Multiplex networks are actively used to simulate com-
plex networks of different nature: from financial (stock
market [336, 337, 339, 340], banks [341], guarantee mar-
ket [342]) to social [343]. Particular attention should be
paid to the work [339], in which the above multiplex mea-
sures are analyzed for the subject of correlations with
known stock market crises.

8.1 Methods of converting time series into graphs

In recent years, interesting algorithms for the transforma-
tion of time series into a network have been developed,
which allows extending the range of known characteristics
of time series even to network ones. Recently, several ap-
proaches have been proposed to transform time sequences
into complex network-like mappings. These methods can
be conventionally divided into three classes [344].

The first is based on the study of the convexity of suc-
cessive values of the time series and is called visibility
graph (VG) [344, 345]. The second analyzes the mutual
approximation of different segments of the time sequence
and uses the technique of recurrent analysis [344]. The
recurrent diagram reflects the existing repetition of phase
trajectories in the form of a binary matrix whose elements
are units or zeros, depending on whether they are close
(recurrent) with given accuracy or not, the selected points
of the phase space of the dynamic system. The recurrence
diagram is easily transformed into an adjacency matrix,
on which the spectral and topological characteristics of
the graph are calculated. Finally, if the basis of form-
ing the links of the elements of the graph is to put cor-
relation relations between them, we obtain a correlation
graph [327, 344]. To construct and analyze the properties
of a correlation graph, we must form an adjacency matrix
from the correlation matrix. To do this, you need to en-
ter a value that for the correlation field will serve as the
distance between the correlated agents. Such a distance
may be dependent on the ratio of the correlation Ci j value
di j =

√
2(1 −Ci j). So, if the correlation coefficient be-

tween the two assets is significant, the distance between

them is small, and, starting from a certain critical value
xcrit, assets can be considered bound on the graph. For an
adjacency matrix, this means that they are adjacent to the
graph. Otherwise, the assets are not contiguous. In this
case, the binding condition of the graph is a prerequisite.

The main purpose of such methods is to accurately re-
produce the information stored in the time series in an al-
ternative mathematical structure, so that powerful graph
theory tools could eventually be used to characterize the
time series from a different point of view in order to over-
come the gap between nonlinear analysis of time series,
dynamic systems and the graphs theory.

The usage of the complexity of recurrent networks to
prevent critical and crisis phenomena in stock markets has
been considered by us in a recent paper [346]. Therefore,
we will focus on algorithms of the VG and multiplex VG
(MVG).

The recurrence diagrams for the visualization of phase
space recurrences are based on Henri Poincare’s idea of
the phase space recurrence of dynamical systems. Accord-
ing to Takens’ theorem [136], an equivalent phase trajec-
tory that preserves the structure of the original phase tra-
jectory can be recovered from a single observation or time
series by the time delay method: the recurrence diagram
is easily transformed into an adjacency matrix, by which
the spectral and topological characteristics of the graph are
calculated [327].

The algorithm of the VG is realized as follows [345].
Take a time series {x(ti) | i = 1, . . . ,N} of length N.

Each point in the time series data can be considered as
a vertex in an associative network, and the edge connects
two vertices if two corresponding data points can “see”
each other from the corresponding point of the time se-
ries (see Figure 26). Formally, two values x(ta) (at a point
in time ta) and x(tb) (at a point in time tb) are connected,
if, for any other value (x(tc), tc), which is placed between
them (i.e., ta < tc < tb), the condition is satisfied:

x(tc) < x(ta) + (x(tb) − x(ta))
tc − ta
tb − ta

.

Note that the visibility graph is always connected by
definition and also is invariant under affine transforma-
tions, due to the mapping method.

An alternative (and much simpler) algorithm is the hor-
izontal visibility graph (HVG) [344], in which a connec-
tion can be established between two data points a and b if
one can draw a horizontal line in the time series joining
them that does not intersect any intermediate data by the
following geometrical criterion: x(ta), x(tb) > x(tc) for all
c such that ta < tc < tb (see figure 26).

In multiplex networks, there are two tasks [346]:
(1) turn separate time series into the network for each
layer; (2) connect the intra-loop networks to each other.
The first problem is solved within the framework of the
standard algorithms described above. For multiplex net-
works, the algorithm of the MVG for the three layers is
presented in figure 27.

The cross-recurrent multiplex network (MCRP) is
formed from recursive diagrams of individual layers.
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Figure 26: Illustration of constructing the visibility graph
(red lines) and the horizontal visibility graph (green lines)
[347]

8.2 Spectral and topological graph properties

Spectral theory of graphs is based on algebraic invariants
of a graph – its spectra [27]. The spectrum of graph G
is the set of eigenvalues S p(G) of a matrix correspond-
ing to a given graph. For adjacency matrix A of a graph,
there exists a characteristic polynomial |λI − A|, which is
called the characteristic polynomial of a graph PG(λ). The
eigenvalues of the matrix A (the zeros of the polynomial
|λI − A|) and the spectrum of the matrix A (the set of eigen-
values) are called respectively their eigenvalues.

Another common type of graph spectrum is the spec-
trum of the Laplace matrix L. The Laplace matrix is used
to calculate the tree graphs, as well as to obtain some im-
portant spectral characteristics of the graph. It can be de-
fined as L = D − A where D – diagonal matrix of order
n:

di j =

di, i = j,
0, i , j,

(45)

with di – the degree of corresponding vertex in the graph.
The spectrum S pL (G) of the matrix L is the root of the

characteristic equation:

|λI − L| = |λI − D + A| = 0. (46)

Comparing the spectra of S p with S pL , it is easy to
establish that

S p(G) = [λ1, λ2, . . . , λn] ,
S pL (G) = [r − λn, λn−1, . . . , r − λ1] ,

where λ1 = r.
The number zero is the eigenvalue of the matrix L,

which corresponds to an eigenvector whose coordinates
are equal to unity. The multiplicity of the null eigenvalue
is equal to the number of connected components of the
graph. The rest of eigenvalues L are positive. The least
of the positive eigenvalues λ2 is called the index of alge-
braic connectivity of the graph. This value represents the
“force” of the connectivity of the graph component and is
used in the analysis of reliability and synchronization of
the graph.

Important derivative characteristics are spectral gap,
graph energy, spectral moments, and spectral radius. The
spectral gap is the difference between the largest and the

next eigenvalues of the adjacency matrix and characterizes
the rate of return of the system to the equilibrium state.
The graph energy is the sum of the modules of the eigen-
values of the graph adjacency matrix:

E(G) =

n∑
i=1

|λi| .

The spectral radius is the largest modulus of the eigen-
value of the adjacency matrix. Denote by Nc the value,
which corresponds to an average eigenvalue of the graph
adjacency matrix:

Nc = ln

1
n

n∑
i=1

exp(λi)


and is called natural connectivity.

The kth spectral moment of the adjacency matrix is de-
termined by the expression

mk(A) =
1
n

n∑
i=1

λk
i ,

with λi that represents eigenvalues of the adjacency matrix,
and n is the vertex of G.

Among the topological measures, one of the most im-
portant is the node degree k – the number of links attached
to this node. For non-directed networks, the node’s de-
gree ki is determined by the sum ki =

∑
j ai j, where the

elements ai j of the adjacency matrix.
For characterizing the linear size of the network, there

are useful concepts of average 〈l〉 and maximum lmax short-
est paths. For a connected network of n nodes, the average
path length (ApLen) is equal to

〈l〉 =
2

n(n − 1)

∑
i> j

li j, (47)

where li j – the length of the shortest path between the
nodes. The diameter of the connected graph is the maxi-
mum possible distance between its two vertices, while the
minimum possible is the radius of the graph.

If the average length of the shortest path gives an idea
of the whole network and is a global characteristic, the
next parameter – the clustering coefficient – is a local value
and characterizes a separate node. For a given node i, the
clustering coefficient Ci is defined as the ratio of the ex-
isting number of links between its closest neighbors to the
maximum possible number of such relationships:

Ci =
2Ei

ki(ki − 1)
. (48)

In equation (48), ki(ki−1)/2 is the maximum number of
links between the closest neighbors. The clustering coeffi-
cient of the entire network is defined as the average value
of Ci for all its nodes. The clustering coefficient shows
how many of the nearest neighbors of the given node are
also the closest neighbors to each other. It characterizes
the tendency to form groups of interconnected nodes –
clusters. For the real-life networks, the high values of the
clustering coefficient are high.
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Figure 27: Scheme for forming bonds between three layers of the multiplex network [346]

Another feature of the node is betweenness. It re-
flects the role of the node in establishing network connec-
tions and shows how many shortest paths pass through this
node. Node betweenness c(v)) is defined as

c(v) =
∑
i, j

σ(i, j | v)
σ(i, j)

, (49)

where σ(i, j) – the total number of shortest paths between
nodes i and j; σ(i, j | v) – the number of those shortest
paths between i, j passing through v. The value of (49)
is also called the load or betweenneess centrality.

One of the main characteristics of the network is the
degree distribution P(d), which is defined as the probabil-
ity that the node i has a degree di = d. Most natural and
actual artificial networks follow a power law distribution

P(d) ∼ 1/dγ, d , 0, γ > 0. (50)

Also, important topological characteristic is the vertex
eccentricity – the largest distance between i and any other
vertex, that is, how far the vertex is far from the other ver-
tices of the graph. The centrality of the vertex measures its
relative importance in the graph. At the same time, the far-
ness of a node is defined as the sum of its distances to all
other nodes, and its closeness is defined as the backward
distance. Thus, the centrality of the node is lower than its
total distance to all other nodes.

Another important measure is the link density in the
graph, which is defined as the number of links ne, divided
by the expression nn(nn − 1)/2, where nn is the number of
nodes of the graph.

From spectral measures, we consider the maximal
node degree (dmax – figure 28a and figure 28b). From the
topological measures, the average path length (APLen –
figure 28c and 28d) is found, which is in accordance with
equation (47).

Figure 28 demonstrates the asymmetric response of the
spectral and topological measures of network complexity.
For the complete series, the calculation parameters are as
follows: window length of 100 days, step is of 1 day.

Figures above show that all of the above spectral mea-
sures have maximum values in pre-crisis periods. The
complex system has the greatest complexity. With the
approach of the crisis, the complexity of the system de-
creases, recovering after the crisis. Some of the topologi-
cal, in particular, APLen, shows an opposite relationship.
Indeed, in more complex systems you can always find
shorter paths that connect any nodes. During the crisis
(reducing complexity, increasing the chaotic component),
the length of the corresponding path increases.

8.3 Multiplex complexity measures

A multilayer/multiplex network [83, 348] is a pair
M=(G,C) where {Gα |α ∈ 1, . . . ,M} is a family of graphs
(whether directed or not, weighed or not) Gα = (Xα, Eα)
that called layers and

C =
{
Eαβ ⊆ Xα × Xβ |α, β ∈ 1, . . . ,M, α , β

}
is a set of links between nodes of layers Gα and Gβ where
α , β. The elements of each Eα are intralayer edges in
M in contrast to the elements of each Eαβ that called inter-
layer edges.

A set of nodes in a layer Gα is denoted as
Xα=

{
xα1 , . . . , x

α
Nα

}
, and an intralayer adjacency matrix as

A[α] = (aαi j) ∈ ReNα×Nα , where

ααi j =

1, (xαi , x
α
j ) ∈ Eα,

0, otherwise.
(51)

for 1 ≤ i ≤ Nα, 1 ≤ j ≤ Nβ and 1 ≤ α ≤ M. For an in-
terlayer adjacency matrix, we have A[α, β](aαβi j ) ∈ ReNα×Nβ ,
where

α
αβ
i j =

1, (xαi , x
β
j ) ∈ Eαβ,

0, otherwise.
(52)

A multiplex network is a partial case of interlayer net-
works, and it contains a fixed number of nodes connected
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(a)

(b)

(c)

(d)

Figure 28: Maximal node degree dmax (a, b) and average
path length 〈l〉 (c, d) for two periods of Bitcoin time series

by different types of links. Multiplex networks are char-
acterized by correlations of different nature [330], which
enable the introduction of additional multiplexes.

Let’s evaluate the quantitative overlap between the var-
ious layers. The average edge overlap is defined as [340]

ω =

∑
i
∑

j>i
∑
α a[α]

i j

M
∑

i
∑

j 1 − δ0,
∑
α α

[α]
i j

(53)

and determines the number of layers in which this edge is
presented. Its value lies on the interval [1/M, 1] and equals
1/M if the connection (i, j) exists only in one layer. In
other words, if there is a layer α such that a[β]

i j = 0∀β , α.
If all layers are identical, then ω = 1. Consequently, this
measure can serve as a measure of the coherence of the
output time series: high values of ω indicate a noticeable
correlation in the structure of the time series.

The total overlap Oαβ between the two layers α and
β is defined as the total number of edges that are shared
between the layers α and β:

Oαβ =
∑

aαi ja
β
i j, (54)

where α , β.
For a multiplex network, the node degree k is already

a vector
ki = (k[1]

i , . . . , k[M]
i ), (55)

with the degree k[α]
i of the node i in the layer α, namely

k[α]
i =

∑
j
a[α]

i j ,

while a[α]
i j is the element of the adjacency matrix of the

layer α. Specificity of the node degree in vector form al-
lows to describe additional quantities. One of them is the
ovelapping degree of node i

oi =

M∑
α=1

k[α]
i . (56)

The next measure quantitatively describes the inter-
layer degree correlations of the selected node in two dif-
ferent layers. If a chosen pair (α, β) from M layers is char-
acterized by the distributions P(k[α]), P(k[β]), the so-called
interlayer mutual information is determined as:

Iα,β =
∑∑

P(k[α], k[β]) log
P(k[α], k[β])

P(k[α]), P(k[β])
, (57)

where P(k[α], k[β]) is the probability of finding a node de-
gree k[α] in a layer α and a degree k[β] in a layer β.
The higher the value of Iα,β, the more correlated (or anti-
correlated) is the degree distribution of the two layers and,
consequently, the structure of a time series associated with
them. We also find the mean value of Iα,β for all possible
pairs of layers – the scalar 〈Iα,β〉 that quantifies the infor-
mation flow in the system.

The quantity that quantitatively describes the distribu-
tion of a node degree i between different layers is the en-
tropy of a multiplexed degree:

S i = −

M∑
α=1

k[α]
i

oi
ln

k[α]
i

oi
. (58)
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Entropy is zero if all connected to i edges are in the
same layer, and has the maximum value when they are
evenly distributed between different layers. So, the higher
value of S i, the more evenly distributed edges connected
to i between different layers.

A similar indicator is the multiplex participation coef-
ficient:

Pi =
M

M − 1

1 − M∑
α=1

(
kαi
oi

)2 . (59)

The Pi takes values on the interval [0, 1] and deter-
mines how homogeneously are distributed the links of a
node i among M layers. If a node is only active on one
layer, Pi = 0; Pi = 1 if a node has an precisely defined
number of incident links that are equally distributed across
M layers.

Obviously, measures S i and Pi are very similar.
We will show that some of these spectral and topologi-

cal indicators serve as the measures of system complexity,
and the dynamic of their changes allow us to build precur-
sors of crashes and critical events in the cryptocurrency
market.

As far as multiplex measures are concerned, they are
very similar in their dynamic to the spectral and topo-
logical representations above (see figure 28). In the case
of a shorter sample of a base of three layers – Bitcoin,
Ethereum, Litecoin (see figure 29-31), we have the asym-
metric behavior of the multiplex measures I,O, o (Equa-
tions (57), (54), (56) and S , P (Equations (58) and (59))
for different methods of building multiplex networks.

Figures 29-31 show that the mentioned multiplex
measures are excellent indicators that warn about the
approaching crisis phenomenon, that is, are indicator-
precursors.

9 Quantum precursors

Quantum econophysics, a direction distinguished by the
use of mathematical apparatus of quantum mechanics as
well as its fundamental conceptual ideas and relativistic
aspects, developed within its boundaries just a couple of
years later, in the first decade of the 21st century [41, 349–
351].

According to classical physics, immediate values of
physical quantities, which describe the system status, not
only exist but can also be exactly measured. Although
non-relativistic quantum mechanics does not reject the ex-
istence of immediate values of classic physical quantities,
it postulates that not all of them can be measured simulta-
neously (Heisenberg uncertainty ratio). Relativistic quan-
tum mechanics denies the existence of immediate values
for all kinds of physical quantities, and, therefore, the no-
tion of system status seizes to be algoristic.

In this section, we will demonstrate the possibilities of
quantum econophysics on the example of the application
of the Heisenberg uncertainty principle and the Random
Matrices Theory to the actual and debatable now market
of cryptocurrencies [80, 352].

9.1 Heisenberg uncertainty principle and
economic analogues of basic physical
quantities

In our paper [42], we have suggested a new paradigm of
complex systems modeling based on the ideas of quan-
tum as well as relativistic mechanics. It has been re-
vealed that the use of quantum-mechanical analogies (such
as the uncertainty principle, the notion of the operator,
and quantum measurement interpretation) can be applied
to describing socio-economic processes. Methodological
and philosophical analysis of fundamental physical no-
tions and constants, such as time, space, and spatial coor-
dinates, mass, Planck’s constant, light velocity from mod-
ern theoretical physics provides an opportunity to search
for adequate and useful analogs in socio-economic phe-
nomena and processes.

The Heisenberg uncertainty principle is one of the cor-
nerstones of quantum mechanics. The modern version of
the uncertainty principle, deals not with the precision of
a measurement and the disturbance it introduces, but with
the intrinsic uncertainty any quantum state must possess,
regardless of what measurement is performed [353, 354].
Recently, the study of uncertainty relations, in general, has
been a topic of growing interest, specifically in the set-
ting of quantum information and quantum cryptography,
where it is fundamental to the security of certain protocols
[355, 356].

To demonstrate it, let us use the known Heisenberg’s
uncertainty ratio which is the fundamental consequence of
non-relativistic quantum mechanics axioms and appears to
be (e.g., [357]):

∆x · ∆v >
~

2m0
, (60)

where ∆x and ∆v are mean square deviations of x coordi-
nate and velocity v corresponding to the particle with (rest)
mass m0, ~ – Planck’s constant. Considering values ∆x
and ∆v to be measurable when their product reaches their
minimum, according to equation (60) we derive:

m0 =
~

2 · ∆x · ∆v
, (61)

i.e., the mass of the particle is conveyed via uncertainties
of its coordinate and velocity – time derivative of the same
coordinate.

Economic measurements are fundamentally relative,
local in time, space and other socio-economic coordinates,
and can be carried out via consequent and/or parallel com-
parisons “here and now”, “here and there”, “yesterday and
today”, “a year ago and now”, etc.

Due to these reasons constant monitoring, analysis,
and time series prediction (time series imply data derived
from the dynamics of stock indices, exchange rates, cryp-
tocurrency prices, spot prices, and other socio-economic
indicators) become relevant for the evaluation of the state,
tendencies, and perspectives of global, regional, and na-
tional economies.

Suppose there is a set of K time series, each of N
samples, that correspond to the single distance T , with an
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(a)

(b)

Figure 29: Dynamics of the second BTC period and multiplex measures for a base of three layers. The graph was built
using the multiplex visibility graph

equally minimal time step ∆tmin:

Xi(tn), for n = 0, 1, . . . ,N − 1; for i = 1, 2, . . . ,K. (62)

To bring all series to the unified and non-dimensional
representation, accurate to the additive constant, we nor-
malize them, have taken a natural logarithm of each term
of the series. Then, consider that every new series Xi(tn) is
a one-dimensional trajectory of a certain fictitious or ab-
stract particle numbered i, while its coordinate is regis-
tered after every time span ∆tmin, and evaluate mean square
deviations of its coordinate and speed in some time win-
dow ∆T = ∆N · ∆tmin = ∆N, 1 � ∆N � N. The “imme-
diate” speed of ith particle at the moment tn is defined by
the ratio:

vi(tn) =
xi(tn+1) − xi(tn)

∆tmin
=

1
∆tmin

ln
Xi(tn+1)
Xi(tn)

(63)

with variance Dvi and standard deviation ∆vi.

Keeping an analogy with equation (1), after some
transformations, we can write an uncertainty ratio for this
trajectory [42]:

1
∆tmin

〈ln2 Xi(tn+1)
Xi(tn)

〉n,∆N −

(
〈ln2 Xi(tn+1)

Xi(tn)
〉n,∆N

)2 ∼ h
mi
,

(64)
where mi – economic “mass” of a Xi series, h – value
which comes as an economic Planck’s constant.

Since the analogy with physical particle trajectory is
merely formal, h value, unlike the physical Planck’s con-
stant ~, can, generally speaking, depend on the historical
period, for which the series are taken, and the length of the
averaging interval (e.g., economical processes are different
in the time of crisis and recession), on the series number i
etc. Whether this analogy is correct or not depends on the
particular series’ properties.

In recent research [30, 358], we tested the economic
mass as an indicator of crisis phenomena on stock index
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(a)

Figure 30: Dynamics of BTC daily prices and multiplex measures O. The graph was built using the MHVG

(a)

Figure 31: Dynamics of BTC daily prices and multiplex measures o. The graph was built using the MCRP

data. Here, we test the model for the cryptocurrency mar-
ket on the example of Bitcoin [79, 80, 352, 359].

Obviously, there is a dynamic characteristic value m,
depending on the internal dynamics of the market. In times
of crashes and critical events marked by arrows, mass m is
significantly reduced in the pre-crash and pre-critical peri-
ods.

Obviously, m remains a good indicator-precursor even
in this case. Value m is considerably reduced before a spe-
cial market condition. The market becomes more volatile
and prone to changes.

Next method of quantum econophysics is borrowed
from nuclear physicists and is called Random Matrix The-
ory.

9.2 Random matrix theory and quantum
indicators-precursors

Random Matrix Theory (RMT) developed in this context
the energy levels of complex nuclei, which the existing
models failed to explain (Wigner, Dyson, Mehta, and oth-
ers [353, 354, 356]). Deviations from the universal predic-
tions of RMT identify specific, nonrandom properties of
the system under consideration, providing clues about the
underlying interactions.

Unlike most physical systems, where one relates cor-
relations between subunits to basic interactions, the un-
derlying “interactions” for the stock market problem are
not known. Here, we analyze cross-correlations between
stocks by applying concepts and methods of random ma-
trix theory, developed in the context of complex quantum
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(c)

(d) (e) (f)

Figure 32: Dynamics of measure m for two entire periods, and its dynamics for their local crashes (c, e) and critical events
(d, f) with the window size of 50 days and step of 1 day

systems where the precise nature of the interactions be-
tween subunits are not known.

RMT has been applied extensively in studying multi-
ple financial time series [42, 352, 355, 357–362].

Special databases have been prepared, consisting of
cryptocurrency time series for a certain time. The largest
number of cryptocurrencies 689 contained a base of 456
days from 31.12.2017 to 31.05.2020, and the smallest
(22 cryptocurrencies) contained a base, respectively, from
11.09.2013 to 31.05.2020 (https://coinmarketcap.com/all/
views/all/). In order to quantify correlations, we first cal-

culate the logarithmic returns of the cryptocurrencies price
series over a time scale ∆t = 1 day. We calculate the pair-
wise cross-correlation coefficients between any two cryp-
tocurrency time series returns. for the largest database,
a graphical representation of the pair correlation field is
shown in figure 33a. For comparison, a map of correla-
tions of randomly mixed time series of the same length
shown in figure 33 b.

For the correlation matrix C we can calculate its eigen-
values, C = UΛUT , where U denotes the eigenvectors, Λ

is the eigenvalues of the correlation matrix, whose density
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(a)

(b)

Figure 33: Visualization of the field of correlations for the
initial (a, c) and mixed (b, d) matrix cryptocurrency

fc(λ) is defined as fc(λ) = (1/N)dn(λ)/dλ, where n(λ) is
the number of eigenvalues of C that are less than λ. In
the limit N → ∞,T → ∞ and Q = T/N > 1 fixed, the
probability density function fc(λ) of eigenvalues λ of the
random correlation matrix M has a closed form:

fc(λ) =
Q

2πσ2

√
(λmax − λ)(λ − λmin)

λ
, (65)

with λ ∈ [λmin, λmax], where λmax
min is given by λmax

min =σ2(1 +

1/Q ± 2
√

1/Q) and σ2 is equal to the variance of the ele-
ments of matrix M.

We compute the eigenvalues of the correlation matrix
C, λmax = λ1 > λ2 > · · · > λ15 = λmin. The probabil-
ity density functions of paired correlation coefficients ci j

and eigenvalues λi for matrices of 110, 298, and 689 cryp-
tocurrencies are presented in figure 34.

From figure 34 it can be seen that the distribution func-
tions for the paired correlation coefficients of the selected
matrices differ significantly from the distribution function
described by the RMT. It can be seen that the crypto mar-

(a)

(b)

Figure 34: Comparison of distributions of the pair corre-
lation coefficients (a) and eigenvalues of the correlation
matrix (b) obtained for initial cryptocurrencies and their
shuffled version

ket has a significantly correlated, self-organized system,
and the difference from the RMT of the case, the corre-
lation coefficients exceed the value of 0.6-0.8 on “thick
tails”. The distribution of eigenvalues of the correlation
matrix also differs markedly from the case of RMT. In our
case, only one-third of its values refer to the RMT region.

Eigenvectors correspond to the participation ratio PR
and its inverse participation ratio IPR

Ik =
∑N

l=1

[
ul

l

]4
, (66)

where ul
k, l = 1, . . . ,N, are the components of the eigen-

vector uk. So, PR indicates the number of eigenvector
components that contribute significantly to that eigenvec-
tor. More specifically, a low IPR indicates that cryptocur-
rencies contribute more equally. In contrast, a large IPR
would imply that the factor is driven by the dynamics of a
small number of cryptocurrencies.
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The irregularity of the influence of eigenvalues of the
correlation matrix is determined by the absorption ratio
(AR)

ARn =

∑n
k=1 λl∑N
k=1 λk

, (67)

which is a cumulative risk measure and indicates which
part of the overall variation is described from the total
number of N eigenvalues.

The difference in dynamics is due to the peculiari-
ties of non-random correlations between the time series
of individual assets. Under the framework of RMT, if the
eigenvalues of the real-time series differ from the predic-
tion of RMT, there must exist hidden economic informa-
tion in those deviating eigenvalues. For cryptocurrencies
markets, there are several deviating eigenvalues in which
the largest eigenvalue λmax reflects a collective effect of the
whole market. As for PR, the differences from RMT ap-
pear at large and small λ values and are similar to the An-
derson quantum effect of localization [363]. Under crash
and critical event conditions, the states at the edges of the
distributions of eigenvalues are delocalized, thus identify-
ing the beginning of one of these events. This is evidenced
by the results presented in figure 35b.

We find that both λmax and PRλmax have large values
for periods containing the crypto market crashes and crit-
ical events. At the same time, their growth begins in the
pre-crashes periods. As well as the economic mass, they
are quantum precursors of crashes and critical events phe-
nomena.

10 Conclusions

Definitely, the factors from within and outside of the cryp-
tocurrencies universe are going to evolve all of them. The
great influence will go from incumbents and policymakers,
as well as challengers and users. Current mistrust on the
part of the government may lead to the introduction of spe-
cific licensing requirements that may make these digital
currencies less attractive. Similarly, the adaptation to them
and acceptance of cryptocurrencies may lead to increasing
demand for them. The current situation with coronavirus
is of paramount importance and is of significant danger.

From the literature overview, we have understood that
crashes and critical events do not disappear without a
trace, but will also affect the fate of individuals. On the
other hand, in the future, the influence of these events
may attract users to alternative forms of currency such
as cryptocurrencies. Increased trading activity on cryp-
tocurrency exchanges could positively affect the popular-
ity of stablecoins. Lastly, the overall monetary system may
be fundamentally changed through the introduction of a
central bank digital currency, potentially upstaging stable-
coins [364].

In order to give reliable, powerful, and simple
indicators-precursors that are able to minimize further
losses as a result of changes, we addressed the reach arse-
nal of the theory of complexity and the methods of non-
linear dynamics that can identify special trajectories in
the complex dynamics and classify them. Following our

(a)

(b)

Figure 35: Inverse participation ratio (a) and (b) quantum
measures of complexity λmax and its participation ratio

research, we obtain informational, (multi-)fractal, chaos-
dynamical, recurrent, irreversible, based on complex net-
works, and quantum measures of complexity.

The obtained quantitative methods were applied to
classified crashes of the Bitcoin market, where it was seen
that these indicators can be used in order to protect your-
self from the upcoming critical change. To draw some con-
clusions about its evolution and factors that influence it,
we pointed out the most influential critical changes in this
market. Relying on different research articles and our pre-
vious experience, such changes were classified as crashes
and critical events. Moreover, we assume crash as strong,
time localized drop with high volatility whose percentage
decline exceeds 30%. Critical events are those falls with
less percentage decline and volatility. The analysis of the
crypto market with the sliding (rolling or moving) win-
dow approach allowed us to draw some conclusions about
its evolution and factors that influence it. Regarding em-
pirical results, we have shown that some of the measures
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are very sensitive to the length of the sliding window and
its time step. For example, if we consider two closest to
each other events, a previous event that had much more
volatility can have a great influence on the corresponding
measure of complexity and spoil the identification of the
next less influential, but important event. Thus, time lo-
calization is significant while calculating the measure of
complexity. The less time localization and time step, the
more corresponding changes are taken into account. For
a much larger time window and its step, we can have less
accurate estimations.

It turned out that most of the chosen measures of com-
plexity respond in advance to the corresponding changes
of complexity in the cryptocurrency market and can be
used in the diagnostic processes. Such measures can be
presented as indicators or even indicators-precursors of the
approaching crashes and critical events.

Relying on the information theory and its powerful
toolkit, we emphasized four measures of complexity, such
as the measure of Lempel-Ziv, classical Shannon entropy,
and its two modifications (Approximate entropy and Per-
mutation entropy). We referred to the complexity of the
systems, how it was described in different studies, and
what methods were applied to quantify its degree. Our
results show that in the pre-crash or pre-critical period, the
complexity of Bitcoin starts to change that is it starts to
decrease, indicating that such events presented to be more
predictable and corresponding patterns are more struc-
tured. Thus, the degree of predictability increases in times
of such events.

Along with information theory, we referred to the mul-
tifractal properties of the cryptocurrency market. As it was
obtained with multifractal detrended fluctuation analysis,
the scaling exponents remain non-linear, and the width of
singularity spectrum changes in time that gives evidence
that at different times (scales) BTC time series exhibits
more or less complex behavior, indicating that cryptocur-
rency exhibits multifractal properties. Applying the width
of multifractality as an indicator of possible critical states
we found that before crash or critical event, this measure
starts to decrease that tell us that the series is expected to
be more predictable and stable, while its dynamics after
such events is increasing that present system to be more
susceptible to fluctuations.

Chaos-dynamical measures were applied to study bit-
coin from the perspective of Chaos theory. Transitions
between chaotic and non-chaotic behavior were identified
with Lyapunov exponents where there was selected the
largest Lyapunov exponent. The beginning of each crash
or critical event can be characterized by the convergence
of the two considered, initially close trajectories where the
Largest Lyapunov exponent reflects the rate of such con-
vergence, while the high-price level regimes are charac-
terized by the divergence of the initially close trajectories.
Whereas decreasing largest Lyapunov exponent indicates
that patterns in the system tend to be predictable (trajec-
tories converge), increasing indicates that the system goes
into an unstable regime. Our empirical results obtained
with the sliding window presented the largest Lyapunov
exponent to be an indicator of such regimes. Moreover,

we considered that such extreme events can be related to
the fat-tails and better described with non-Gaussian distri-
butions, particularly, described by Lévy alpha-stable dis-
tribution and its four parameters. As it is still debatable
whether the stable distribution is completely applicable or
not, we addressed to its group of stable parameters, and
during tests, we emphasized that the characteristic expo-
nent that serve to describe the thickness of tails is the best
for serving as an indicator-precursor of possible crashes
and critical events. Thus, is shown that such a complex
system as the bitcoin market, with growth and preferential
attachments, is characterized by power-laws.

The analysis of the crypto market with the measures
from the recurrence quantification analysis revealed that
its toolkit is suitable for distinguishing diverse market pe-
riods. Such measures as recurrence rate, determinism, the
entropy diagonal line histogram, recurrence periodic den-
sity entropy, recurrence entropy, and divergence, which
methodology is based on clusters of isolated points, ver-
tical/diagonal lines, etc., are presented to be great for de-
tection of the periods of instability or relaxation.

Also, applying the concept of time irreversibility
(asymmetry), we found it changes for the period of crashes
and critical events, and corresponding measures detect
such phenomena. Thus, time irreversibility based on per-
mutation patterns can serve as a good base for further mod-
els of financial control. However, much more measures
can be added to this list [107, 316, 365–367].

Moreover, we have demonstrated the possibility of
studying complex cryptosystems within the network
paradigm. The time series can be presented as an eco-
nomic network (visibility graph) and multiplex network
with a set of both spectral and topological characteristics,
which are sensitive to the critical changes in the BTC mar-
ket.

Addressing to quantum econophysics and its apparatus
where appropriate measures of complexity were obtained.
Such quantitative methods as Heisenberg uncertainty and
the Random matrix approach have confirmed their effec-
tiveness for studying the cryptocurrency market. We found
that economic “mass” along with λmax and PR λmax are
presented to be effective due to their robustness, computa-
tional efficiency, and simplicity.

Apparently, the impact of different crashes and criti-
cal events was reflected in the cryptocurrency market, as
well as the coronavirus pandemic and therefore, the dy-
namics of past events, as well as of the subsequent could
be identified in advance using the appropriate indicators
of the theory of complexity. In our further studies, we are
going to aim our view on exploring and analyzing of other
methods from the theory of complexity. Being emerging
currency that still needs to become trustworthy among as
many people as possible, bitcoin’s dynamics is the subject
not only to high fluctuations but also to various attacks
[368–372] of blockchain [373] and Proof-of-Work proto-
col [374]. Thus, particular interest presents research on
implementing the theory of complex systems and its enor-
mous toolkit for identifying such abnormal activity when
transactions between users happen to make appropriate ac-
tions in advance. Equally interesting is the development
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of the theory of quantum computation and quantum in-
formation [375–378] where it would be interesting to see
their influence on blockchain and cryptocurrencies. More-
over, the research in the field of artificial intelligence, ma-
chine, and deep learning does not remain without attention
[51, 379–390].
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