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Abstract. Machine learning is now widely used almost everywhere, primarily for forecasting. 
In the broadest sense, the machine learning objective may be summarized as an approximation 
problem, and the issues solved by various training methods can be reduced to finding the 
optimal value of an unknown function or restoring a function. At the moment, we have only 
experimental samples of quantum computers based on classical-quantum logic, when quantum 
gates are used instead of ordinary logic gates, and probabilistic quantum bits are used instead 
of deterministic bits. Namely, the probabilistic nature problems that provide for the 
determination of a certain optimal state from a large set of possible ones on which quantum 
computers can achieve “quantum supremacy” – an extraordinary (by many orders of 
magnitude) reduction in the time required to solve the task. The main idea of the work is to 
identify the possibility of achieving, if not quantum supremacy, then at least a quantum 
advantage when solving machine learning problems on a quantum computer. 

1.  Introduction 
Traditionally, quantum computing is defined as a type of nonclassical computing that operates on the 
quantum state of subatomic particles, which represent information as elements denoted as quantum 
bits (qubits). A qubit can represent all possible values simultaneously (superposition) until read. 
Qubits can be linked with other qubits, a property known as entanglement. Quantum algorithms 
manipulate linked qubits in their undetermined (entangled) state, a process that can address problems 
with vast combinatorial complexity [7], reaching “quantum supremacy”. 

Identifying potential applications for quantum computing, Kasey Panetta points out that they “will 
be narrow and focused, as general-purpose quantum computing will most likely never be economical” 
[13]. In his opinion, quantum computing could enable breakthroughs by machine learning, finance, 
healthcare, creation of new materials, artificial intelligence (which requires 100s – 1000s qubits), 
chemistry and biochemistry (100-200 qubits). In particular, for finance, quantum computing could 
enable faster, more complex Monte Carlo simulations (for example, trading, trajectory optimization, 
market instability, price optimization and hedging strategies) and machine learning methods, which in 
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the general case are reduced to problems of finding the extremum of a multidimensional function 
along the nonlinear response surface. 

Currently, computing devices capable of performing quantum computing (quantum computers) are 
available for consumers of computing services using the QCaaS (quantum computing as a service) 
model. As of June 2020, the maximum number of qubits available for simultaneous use does not 
exceed 60, which is significantly less than the number required to achieve “quantum supremacy”. This 
raises the problem of investigating the possibilities of quantum programming for machine learning 
tasks implementation, namely, the use of machine learning algorithms, implemented by the quantum 
programming language, to analyze traditional data and compare the performance of quantum and von-
neumanns implementations at the present stage of their development.  

The aim of the research is to carry out a comparative analysis of the implementation of quantum-
enhanced machine learning algorithms in the quantum programming language. 

To achieve the goal of the study, the following tasks were set: 
1. Analyze Quantum Software Engineering tools in order to select a tool that is appropriate for the 

implementation of machine learning tasks. 
2. Consider quantum-enhanced machine learning algorithms. 
3. Conduct a comparative analysis of the efficiency of quantum-enhanced and classical machine 

learning algorithms. 

2.  Fundamentals of Quantum Software Engineering 

2.1.  Basic research concepts 
Quantum computer is a computing device using quantum-mechanical phenomena (superposition, 
entanglement, etc.) for data transmission and processing. 

Quantum programming is a software development process for quantum computer. 
«Classical» applications of quantum computers (by Richard Feynman) – modeling complex 

[many-particle physical] systems: Zalka and Wiesner’s algorithm. 
«New» applications of quantum computers are tasks that require enumerating a large number of 

options: Grover's algorithm (general task), Shor's algorithm (factorization), Abrams and Lloyd's 
algorithm (identification of periodic properties), etc. 

Quantum machine learning is an application of machine learning algorithms for quantum data 
analysis. 

Quantum-enhanced machine learning is the use of machine learning algorithms implemented in the 
quantum programming language for the analysis of traditional data. 

Software Engineering is a systematic application of engineering approaches to the design, 
implementation, testing and documenting of software. 

2.2.  Concept of Quantum Software Engineering 
The first systems presentation of the Quantum Software Engineering concept was made by John Clark 
and Susan Stepney in 2002 [4]. Researchers believe that quantum computing cannot be effectively 
implemented in the traditional computer Von Neumann architecture, the mathematical model of which 
is the Turing machine. The authors [3] refer to the main challenges that Quantum Software 
Engineering will face in 2020: 

– the question of what a quantum programming language should be – an extension of traditional 
languages, a logical programming language in a low-level programming language or a language that 
implements a new paradigm; 

– the need to develop compilers for quantum programming languages; 
– the need to develop new quantum algorithms and define the classes of traditional algorithms that 

can be quantised; 
– feasibility of developing quantum computer simulators for use on traditional computer systems; 
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– despite the fact that quantum execution is in principle unobservable, debugging and testing 
techniques are necessary for quantum programming languages; 

– quantum algorithms require visualization for their understanding, design, and implementation. 
The criteria and success indicators of Quantum Software Engineering proposed by John Clark and 

Susan Stepney are summarized in table 1. 
 
Table 1. The criteria and success indicators of Quantum Software Engineering (according to [4]). 

Criteria  Indicators  

It arises from scientific curiosity about the 
foundation, the nature or the limits of a 
scientific discipline 

Quantum computation has broadened the fundamental limits of 
computer science and software engineering 

The ability to create new engineering 
solutions 

The physical infrastructure is constantly evolving, each solution 
is new 

Technological continuity 

The existence of high level languages and development 
techniques that can be used by computer scientists and software 
engineers with only the same style of training they receive today 
(so, no need to teach the fundamentals of quantum mechanics to 
all) 

Research community support Support for all interested in new computing paradigms and new 
levels of computing power 

International character of research This is a new fundamental area of software engineering 

It is generally comprehensible, and captures 
the imagination of the general public, as well 
as the esteem of scientists in other 
disciplines 

It is not generally understood, but is known for its worldwide 
interpretation 

The problem has a long-standing statement, 
but has not yet been resolved Formulated by Richard Feynman in the late 1970s. 

It promises to go beyond what is initially 
possible, and requires development of  
understanding, techniques and tools 
unknown at the start of the project 

Problems exist on every level, from developing a whole new 
conceptual paradigm, to building intellectual and simulation 
tools 

It calls for planned co-operation among 
identified research teams and communities 

Research is needed in a number of areas (languages, algorithms, 
tools, simulation, visualisation, etc.) 

It encourages and benefits from competition 
among individuals and teams, with clear 
criteria on who is winning, or who has won 

There need not be a single “winner”, diversity of solutions 
should be encouraged, as in classical software engineering, to be 
applicable to a range of application domains 

It decomposes into identified intermediate 
research goals, whose achievement brings 
scientific or economic benefit, even if the 
project as a whole fails 

There are several components of the problem that can be 
explored in parallel 

It will lead to radical paradigm shift Quantum computing is a radical paradigm shift 
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In 2020, Quantum Software Engineering includes such components [19]: 
• Paradigms for developing quantum software 
• Quantum software design 
• Quantum software testing 
• Quantum software verification 
• Quantum software coding practices 
• Quantum software reuse 
• Quantum software experimentations 
• Quantum software execution 
• Industrial applications 
• Empirical evaluations 
In February 2020, at QANSWER 2020: 1st International Workshop on the QuANtum SoftWare 

Engineering & pRogramming, the Talavera Manifesto for Quantum Software Engineering and 
Programming [12] was adopted, containing a set of principles and commitments: 

Quantum Software Engineering 
– is agnostic regarding quantum programming languages and technologies; 
– embraces the coexistence of classical and quantum computing, and advocates the use of 

reengineering techniques to integrate new quantum algorithms with the existing classical information 
systems. Reverse engineering techniques are also needed to parse and abstract quantum program 
information that is to be integrated into classical programs; 

– supports the management of quantum software development projects, delivering quantum 
software that fulfils the initial business goal and requirements, while at the same time ensuring that 
quality, time, and cost constraints are being properly observed; methodologies for developing quantum 
programs must be created or adapted from the existing ones; effort estimation methods for quantum 
software development need to be provided as well; 

– considers the evolution of quantum software: quantum software should be maintained and 
evolved from inception to removal, and quantum software evolution must be handled throughout the 
whole quantum software lifecycle; 

– aims at delivering quantum programs with desirable zero defects: It is in charge of defining and 
applying testing and debugging techniques to quantum programs in such a way that most defects can 
be detected and solved before the program is released; 

– assures the quality of quantum software: quality management for both process and product are 
essential if quantum software with expected quality levels is to be produced; since we cannot improve 
what we cannot measure, new metrics for quantum programs and quantum processes have to be 
developed; 

– promotes quantum software reuse, helping development teams to share, index, and find quantum 
software that can be reused: this requires study of design and architectural patterns for quantum 
programs, facilitate technical communication, and work on creating libraries of reference examples 
and application demonstrations; 

– addresses security and privacy by design: quantum information systems must be secure and 
guarantee the privacy of data and of users from the initial phases of quantum software development, 
i.e., by design; 

– covers the governance and management of software: managers should be aware of the particular 
processes, organizational structures, principles, policies and frameworks, information, culture, ethics 
and behaviour, people, skills and competences, as well as the services, infrastructure and applications 
that are associated with quantum software and that are (or should be) provided by organizations. 

The authors of the manifesto separately appeal to educators with a request to integrate quantum 
software engineering in curricula within the existing software engineering degrees and/or courses in 
this or other disciplines, and clearly specify which competences and skills are required for future 
quantum software engineers [15]. 
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2.3.  Quantum Software Engineering tools 
The execution of quantum programs on personal computer equipment is difficult to access due to its 
lack of prevalence, so for more than a quarter-century, quantum simulators – software tools that 
simulate quantum circuits – have been the main means of their execution. The first mention of QCaaS 
(Quantum Computing as a Service) occurs only in 2015 in the article [20] by Mijanur Rahaman and 
Md. Masudul Islam. 

The world's largest QCaaS providers: 
– D-Wave Systems Inc. (Canada) – SDK Ocean [6] (Python, C++); 
– International Business Machines Corporation (USA) – SDK ProjectQ [22] (Python), Qiskit [17] 

(Python); 
– Cambridge Quantum Computing Limited (Great Britain) – SDK t|ket> [2] (Python); 
– QC Ware, Corp. (USA) – SDK Forge (Python); 
– StationQ - Microsoft (USA) – SDK LIQUi|> [11] (F#), Microsoft Quantum Development Kit 

[10] (F#);  
– Rigetti Computing (USA) – SDK Forest [21] (Python). 
Thus, the main programming language for cloud access to quantum computing is Python. Another 

criterion for choosing a QCaaS vendor is computing power, measured in qubits. This indicator is the 
largest in D-Wave Advantage – 5000 (in clusters of 8) qubits based on quantum annealing, which 
narrows the scope of its application to solving optimization problems, which boil down to finding the 
ground state for a set of spins. For universal quantum computers on quantum circuits, the number of 
qubits is significantly lower and today (June 2020) is the highest in IBM Q 53 (53 qubits) and Google 
Bristlecone (72 qubits). Unfortunately, Google's Quantum Computing Playground [19] is a browser-
based quantum simulator, and there is no open cloud access to Google's Bristlecone. For cloud access 
to IBM Q, you can use both their library – Qiskit, and a third-party – ProjectQ. Considering that the 
highest level of specialization is provided by its own SDK, Qiskit was chosen for further work. 

3.  Quantum-enhanced machine learning 

3.1.  Quantum models of machine learning 
Srinivasan Arunachalam and Ronald de Wolf у [1] offer three main quantum learning models: 

1. Quantum exact learning based on membership queries to find the most accurate unknown 
function (quantum approximation problem). The efficiency of quantum algorithms in relation to 
classical ones in this case depends on how the learning efficiency is measured. If the measure of 
efficiency is the training time, then there are such classes of functions for which quantum algorithms 
are much faster than classical ones, assuming that the queries implementation in a quantum 
superposition is possible. 

2. Quantum Probably Approximately Correct (PAC) learning to find an unknown function over a 
set of samples (quantum supervised learning). The difference between quantum PAC learning and 
classical learning is that the dataset can be in a state of quantum superposition. 

3. Quantum agnostic learning to search for the (n + 1)-th bit, which is a continuation of a sequence 
with n bits (quantum prediction task). 

The authors point to three types of complexity that arise when applying quantum learning 
models [1]: 

a) query complexity of quantum exact learning: the number of quantum membership queries 
needed to exactly learn a target concept can be polynomially smaller than the number of classical 
membership queries, but not much smaller than that; 

b) sample complexity: for the distribution-independent models of PAC and agnostic learning, 
quantum examples give no significant advantage over classical random examples: for every concept 
class, the classical and quantum sample complexities are the same up to constant factors. In contrast, 
for some fixed distributions (e.g., uniform) quantum examples can be much better than classical 
examples; 
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c) time complexity: there exist concept classes that can be learned superpolynomially faster by 
quantum computers than by classical computers, for instance based on Shor’s or Simon’s algorithm. 

In the case of applying quantum machine learning models to the analysis of traditional data, we are 
talking about quantum-enhanced machine learning. Frank Phillipson [11] defines three main benefits 
of quantum machine learning: 

– improving runtime (for example with a quantum hybrid Helmholtz machine); 
– learning capacity improvements (for example with a quantum Hopfield neural network); 
– learning  efficiency improvements: less training information or simpler models needed to produce 

the same results or more complex relations can be learned from the same data. 
Various methods can be applied to increase the efficiency of training, one of which is variational 

quantum circuits – VQC [14]. 
Evidence of the intensity of quantum-enhanced machine learning development is the fact that the 

systematic review of the problem in 2016, carried out by Peter Wittek in [23], today (June 2020) is 
already considered as a classic, and that is indicated by the co-author in a new review [5]. 

Vedran Dunjko and Peter Wittek also highlight such perspective directions in the development of 
quantum machine learning in general: 

а) supervised and unsupervised learning: continuous-variable quantum neural networks, quantum 
convolutional neural networks, quantum algorithms for feedforward neural networks, Bayesian deep 
learning, sublinear quantum algorithms for training linear and kernel-based classifiers; 

б) reinforcement learning: quantum algorithms for solving dynamic programming problems 
(including hidden quantum Markov models), quantum gradient estimation. 

The authors conclude that “the entire field of “genuinely quantum” machine learning (where the 
data itself is quantum) is still finding its right place and full recognition. Perhaps as quantum 
technologies mature, and problems of quantum learning become genuinely practical, the field will 
crystallize and grow. ... In summary, QML [quantum machine learning] is diverse, growing, inclusive, 
and it is rich in open questions. ... Capturing all the QML trends, which will in the end be central is, 
for the time being, an impossible task – and, in a way, this is the key message of this note” [5]. 

3.2.  An overview of quantum-enhanced machine learning tools in Qiskit 
Qiskit provides the ability to develop quantum software both at the quantum circuits level using 
OpenQASM [16] and at a high level of abstraction using Python in a Jupyter notebook. The main 
components of the library are: 

– quantum circuits modeling tools (Terra); 
– implementation of standard quantum algorithms (Aqua – Algorithms for QUantum Applications), 

in particular, for solving optimization tasks; 
– cloud quantum computing tools (Aer); 
– tools for simulating quantum noise (Ignis). 
Aqua includes modules for research in finance (qiskit.finance), machine learning (qiskit.ml), 

optimization (qiskit.optimization) and chemistry (qiskit.chemistry) [16]. 
The machine learning module contains standard datasets and ways to access custom. Various 

optimization algorithms can be used to process them: 
ADMMOptimizer – an implementation of the ADMM-based heuristic (ADMM – alternating 

direction method of multipliers); 
CobylaOptimizer – the SciPy COBYLA optimizer (COBYLA – Constrained Optimization BY 

Linear Approximation); 
CplexOptimizer – the CPLEX optimizer for linear, integer and quadratic programming tasks; 
GroverOptimizer – uses Grover Adaptive Search (GAS) to find the minimum of a QUBO function 

(QUBO – quadratic unconstrained binary optimization); 
MinimumEigenOptimizer – minimum eigen solvers; 
RecursiveMinimumEigenOptimizer – a meta-algorithm that applies a recursive optimization. 
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The qiskit.aqua.components.optimizers module offers a set of algorithms for local (Analytic 
quantum gradient descent optimizer, constrained optimization by linear approximation optimizer, 
Nelder-Mead optimizer, Nakanishi-Fujii-Todo algorithm, Powell optimizer, truncated Newton 
optimizer, etc.) and global optimizations (controlled random search with local mutation optimizer, 
evolutionary optimizer, etc.). It is advisable to use quantum support vector machine (QSVM) and 
variational quantum classifier (VQC) algorithms to solve classification tasks. 

4.  Experimental verification of the efficiency of quantum-enhanced machine learning 
algorithms 
When implementing quantum computing on real architectures, in addition to the classical decoherence 
problem, which significantly limits the running time of quantum algorithms (70-150 μs for a 20-qubit 
IBM Q System One with a maximum number of simultaneously entangled qubits equal to 6), it is also 
necessary to take into account error reading the results. The authors [9] provide the following values 
for quantum computers accessible via QCaaS (table 2). 

 
Table 2. Characteristics of common quantum computers (according to [12]). 

Machine Qubits 2Q 
gates 

Coherence 
time (us) 

1Q 
error, 

% 

2Q 
error, 

% 

Read 
output, 

% 
Qubit topology 

IBM Q5 
Tenerife 5 6 40 0,2 4,76 6,21 

 

IBM Q14 
Melbourne 14 18 30 1,19 7,95 9,09 

 

IBM Q16 
Rüschlikon 16 22 40 0,22 7,14 4,15 

 
Rigetti 
Agave 4 3 15 3,68 10,8 16,37  

Rigetti 
Aspen1 16 18 20 3,43 8.92 5,56 

 

Rigetti 
Aspen3 16 18 20 3,79 5,37 6,65 

UMD 
Trapped Ion 5 10 1,5∙106 0,2 1,00 0,6 

 
 
Thus, at the current state of quantum technologies development, it is necessary to use such data 

sets, the processing steps of which by quantum-enhanced machine learning algorithms correspond to 
the requirements of the chosen platform – IBM Q. 

Machine learning was performed on the wine and breast_cancer datasets using the Qiskit 
(quantum-enhanced machine learning) and sklearn (classical machine learning) libraries. Testing was 
performed on a local two-qubit quantum simulator with 8 GB of RAM and servers ibmqx2 (2 qubits), 
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ibmq_16_melbourne (16 qubits), ibmq_vigo, ibmq_london and ibmq_burlington (all 5 qubits). The 
machine learning procedure was repeated 6 times for each dataset. The results are presented in table 3. 

 
Table 3. Experimental verification of the efficiency of machine learning on quantum and traditional 

architectures. 

Server 
Time of quantum-enhanced machine learning 

(s) 
Time of classical machine learning 

(s) 
wine breast_cancer wine breast_cancer 

ibmqx2 

24.8 
24.7 
24.5 
24.6 
24.8 
24.7 

18 
18.1 
17.9 
18.1 
18.1 
17.8 

0.021 
0.021 
0.026 
0.026 
0.026 
0.026 

0.027 
0.027 
0.026 
0.027 
0.027 
0.026 

ibmq_16_melbourne 

25 
25.2 
25.2 
25.1 
25.2 
24.8 

18.9 
18.7 
10.2 
10.2 
18 

18.9 

ibmq_vigo 

28.3 
28.3 
28.1 
28 

26.9 
28.3 

20.4 
20.4 
20.4 
20.7 
20.4 
20.7 

ibmq_london 

26.1 
26.2 
26.5 
26.5 
26.3 
26.2 

19.4 
19.3 
19.6 
19.5 
19.4 
19.7 

ibmq_burlington 

27.3 
27.1 
26.7 
27.1 
27 

27.1 

20.4 
20.4 
20.3 
20.5 
20.3 
20.1 

local quantum 
simulator 

111 
105.1 
102.8 
103.5 
111.2 
99.9 

22.2 
23.3 
32.7 
31.7 
22.4 
22.1 

0.190 
0.020 
0.028 
0.021 
0.020 
0.022 

0.021 
0.023 
0.021 
0.021 
0.026 
0.021 

 
When using sklearn on IBM Q Experience, there was no way to determine on which server the 

execution was occurring – multiple repetitions of tests at different times of the day did not lead to a 
significant change in the results.  

The code for all types of tests is presented in appendices A, B, C. 
Analysis of Table 3 allows us to conclude that at the current stage of quantum technologies 

development traditionally machine learning provides greater performance than quantum-enhanced. At 
the same time, quantum-enhanced machine learning algorithms turned out to be inversely sensitive to 
the complexity of the dataset: training on a more complex dataset breast_cancer (30 inputs, 2 outputs, 
569 elements) was performed at a higher speed than training on a less complex data set wine 
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(13 inputs parameters, 3 outputs, 178 elements), while a direct relationship was observed for classical 
machine learning, confirmed by [2] and other sources. The results of the analysis give an opportunity 
to make the assumption that it is advisable to apply quantum-enhanced machine learning to datasets 
with a large input dimension, the assumed value for which is the probability of choosing one of two 
sets of classes – such classes are effectively worked out by single-qubit systems. 

5.  Conclusions 
1. The core of Quantum Software Engineering is quantum programming – the process of 

developing programs for a quantum computer: a computing device that uses the phenomena of 
quantum mechanics to process data. Due to the low level of availability of such devices, it is advisable 
to access them under QCaaS model (quantum computing as a service). The conducted review of 
Quantum Software Engineering tools provided an opportunity to single out their main classes 
(quantum simulators, libraries, visualizers and cloud quantum services) and recommend using IBM Q 
as a hardware platform for quantum computing, Qiskit as a library of quantum algorithms, Python as a 
programming language and IBM Quantum Experience as QCaaS Provider. 

2. The use of machine learning algorithms for the analysis of quantum data can be described by 
three quantum machine learning models (quantum exact learning, quantum Probably Approximately 
Correct learning and quantum agnostic learning), in the application of which there are three types of 
difficulties associated with the query complexity of quantum exact learning, quantum the intricacy of 
datasets and the sensitivity of quantum algorithms to them. A prospective direction in the machine 
learning development is the use of quantum learning models for analyzing traditional data, the 
implementation of which in Qiskit Aqua 0.7.3 is still a limited solution to classification tasks. 

3. The results of an experiment using a variational quantum classifier on two datasets showed that 
at the current stage of quantum technologies development, classical machine learning provides greater 
performance than quantum-enhanced machine learning. At the same time, the use of quantum-
enhanced machine learning algorithms for the binary classification tasks, even with a high dimension 
of the input data, gives a significant (several times) acceleration compared to the ternary classification 
tasks, while when using classical machine learning, the execution time increased depending on the 
volume dataset and their dimensions. The analysis of the experimental results provides an opportunity 
to make an assumption that quantum-enhanced machine learning is advisable to apply to datasets with 
a large input dimension, the assumed value for which is the probability of choosing one of two sets of 
classes – such classes are efficiently processed by one-qubit systems. 

Prospects for further research are in a systematic study of the capabilities of Quantum Software 
Engineering and its applications to solving forecasting problems. 

Appendix A. Code for quantum-enhanced machine learning on the wine dataset 
(ibmq_burlington server, 5 qubits) 
# Importing standard Qiskit libraries and configuring account 
from qiskit import QuantumCircuit, execute, Aer, IBMQ 
from qiskit.compiler import transpile, assemble 
from qiskit.tools.jupyter import * 
from qiskit.visualization import * 
from qiskit import BasicAer 
from qiskit.aqua import QuantumInstance, aqua_globals 
from qiskit.aqua.algorithms import VQC 
from qiskit.aqua.components.optimizers import COBYLA 
from qiskit.aqua.components.feature_maps import RawFeatureVector 
from qiskit.ml.datasets import wine 
from qiskit.circuit.library import TwoLocal 
import time 
 
# Loading your IBM Q account(s) 
provider = IBMQ.load_account() 
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from qiskit import BasicAer 
from qiskit.aqua import QuantumInstance, aqua_globals 
from qiskit.aqua.algorithms import VQC 
from qiskit.aqua.components.optimizers import COBYLA 
from qiskit.aqua.components.feature_maps import RawFeatureVector 
from qiskit.ml.datasets import wine 
from qiskit.circuit.library import TwoLocal 
import time 
 
seed = 1376 
aqua_globals.random_seed = seed 
 
# Use Wine data set for training and test data 
feature_dim = 4  # dimension of each data point 
_, training_input, test_input, _ = wine(training_size=12, 
                                        test_size=4, n=feature_dim) 
 
instance = QuantumInstance(provider.get_backend('ibmq_burlington'), 
     shots=1024, seed_simulator=seed, seed_transpiler=seed, 
                                 skip_qobj_validation=True) 
feature_map = RawFeatureVector(feature_dimension=feature_dim) 
start_time = time.time() 
vqc = VQC(COBYLA(maxiter=100), 
          feature_map, 
          TwoLocal(feature_map.num_qubits, ['ry', 'rz'], 'cz', reps=3), 
          training_input, test_input) 
result = vqc.run(instance) 
 
print('Testing accuracy: {:0.2f}'.format(result['testing_accuracy'])) 
print(result) 
 
print("--- %s seconds ---" % (time.time() - start_time)) 

Appendix B. Code for quantum-enhanced machine learning on breast_cancer dataset (local 
quantum emulator, 5 qubits) 
from qiskit import BasicAer 
from qiskit.aqua import QuantumInstance, aqua_globals 
from qiskit.aqua.algorithms import VQC 
from qiskit.aqua.components.optimizers import COBYLA 
from qiskit.aqua.components.feature_maps import RawFeatureVector 
from qiskit.ml.datasets import breast_cancer 
from qiskit.circuit.library import TwoLocal 
import time 
import random 
 
seed = 1376 
aqua_globals.random_seed = seed 
 
# Use Wine data set for training and test data 
feature_dim = 2  # dimension of each data point 
X_train = [] 
Y_train = [] 
_, training_input, test_input, _ = breast_cancer(training_size=12, 
                                        test_size=4, n=feature_dim) 
instance = QuantumInstance(BasicAer.get_backend('statevector_simulator'), 
                  shots=1024, seed_simulator=seed, seed_transpiler=seed) 
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feature_map = RawFeatureVector(feature_dimension=feature_dim) 
start_time = time.time() 
vqc = VQC(COBYLA(maxiter=100), 
          feature_map, 
          TwoLocal(feature_map.num_qubits, ['ry', 'rz'], 'cz', reps=3), 
          training_input, test_input) 
result = vqc.run(instance) 
 
print('Testing accuracy: {:0.2f}'.format(result['testing_accuracy'])) 
print(result) 
 
print("--- %s seconds ---" % (time.time() - start_time)) 

Appendix C. Classical machine learning code on breast_cancer dataset 
import numpy as np 
from sklearn.datasets import load_wine 
from sklearn.svm import SVC 
import seaborn as sns 
import matplotlib.pyplot as plt 
from sklearn.datasets import load_iris, load_breast_cancer 
from sklearn.model_selection import train_test_split 
from sklearn.svm import LinearSVC, SVC 
from sklearn.metrics import classification_report 
from sklearn.model_selection import GridSearchCV 
import time 
import pandas as pd 
 
# Load data 
x,y = load_breast_cancer(return_X_y=True) 
 
data = load_wine() 
df = pd.DataFrame(data['data'], columns=data['feature_names']) 
df['Target'] = data['target'] 
X = df.drop('Target', axis=1) 
y = df['Target'] 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, 
random_state=1376) 
 
start_time = time.time() 
svc = SVC(kernel="linear", C=0.025) 
svc.n_iter_ = 100 
svc.fit(X_train, y_train) 
test_predictions = svc.predict(X_test) 
train_predictions = svc.predict(X_train) 
print("Train:") 
print(classification_report(y_train, train_predictions)) 
print("Test:") 
print(classification_report(y_test, test_predictions)) 
print("--- %s seconds ---" % (time.time() - start_time)) 
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