
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Comparisons of performance between quantum-enhanced and classical
machine learning algorithms on the IBM Quantum Experience
To cite this article: P V Zahorodko et al 2021 J. Phys.: Conf. Ser. 1840 012021

View the article online for updates and enhancements.

This content was downloaded by semerikov from IP address 193.151.14.21 on 15/03/2021 at 15:25

https://doi.org/10.1088/1742-6596/1840/1/012021
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstsoi07-djrQ8BX2ZBDwFHPIwBMnfHtUacK4qQyT5rvdWORu3RGOInFDNYwHzSsrsnR-sXqZy9ZVOfmk_3u6tXZdVdC4J6fG2BMdVf1xEBl0gStaO9fNn6J67RT006FF3i4-p76Pe0xZlfaXcuaC8VoaQJs0f1l_lhsDr8s725tSqlw7dwuwN0D7RjPzuz4ecUGAQVIBDxB-hNumTx7o6GZmWu5y3NSFOiWvzn5rLkvBf3Ul1bxZJi8XXMm-qprBvkh24hMdi9I6ucLe9AZyPSc&sig=Cg0ArKJSzCDLy4vJA9Z0&adurl=https://ecs.confex.com/ecs/240/cfp.cgi%3Futm_source%3DIOPPW%26utm_medium%3DBanners%26utm_campaign%3D240Abstract%26utm_content%3DApr9

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

1

Comparisons of performance between quantum-enhanced and
classical machine learning algorithms on the IBM Quantum
Experience

P V Zahorodko1, S O Semerikov1,2,3, V N Soloviev1, A M Striuk2, M I Striuk2 and
H M Shalatska2
1 Kryvyi Rih State Pedagogical University, 54 Gagarin Ave., Kryvyi Rih, 50086,
Ukraine
2 Kryvyi Rih National University, 11 Vitalii Matusevych Str., Kryvyi Rih, 50027,
Ukraine
3 Institute of Information Technologies and Learning Tools of NAES of Ukraine,
9 M. Berlynskoho Str., Kyiv, 04060, Ukraine

E-mail: semerikov@gmail.com

Abstract. Machine learning is now widely used almost everywhere, primarily for forecasting.
In the broadest sense, the machine learning objective may be summarized as an approximation
problem, and the issues solved by various training methods can be reduced to finding the
optimal value of an unknown function or restoring a function. At the moment, we have only
experimental samples of quantum computers based on classical-quantum logic, when quantum
gates are used instead of ordinary logic gates, and probabilistic quantum bits are used instead
of deterministic bits. Namely, the probabilistic nature problems that provide for the
determination of a certain optimal state from a large set of possible ones on which quantum
computers can achieve “quantum supremacy” – an extraordinary (by many orders of
magnitude) reduction in the time required to solve the task. The main idea of the work is to
identify the possibility of achieving, if not quantum supremacy, then at least a quantum
advantage when solving machine learning problems on a quantum computer.

1. Introduction
Traditionally, quantum computing is defined as a type of nonclassical computing that operates on the
quantum state of subatomic particles, which represent information as elements denoted as quantum
bits (qubits). A qubit can represent all possible values simultaneously (superposition) until read.
Qubits can be linked with other qubits, a property known as entanglement. Quantum algorithms
manipulate linked qubits in their undetermined (entangled) state, a process that can address problems
with vast combinatorial complexity [7], reaching “quantum supremacy”.

Identifying potential applications for quantum computing, Kasey Panetta points out that they “will
be narrow and focused, as general-purpose quantum computing will most likely never be economical”
[13]. In his opinion, quantum computing could enable breakthroughs by machine learning, finance,
healthcare, creation of new materials, artificial intelligence (which requires 100s – 1000s qubits),
chemistry and biochemistry (100-200 qubits). In particular, for finance, quantum computing could
enable faster, more complex Monte Carlo simulations (for example, trading, trajectory optimization,
market instability, price optimization and hedging strategies) and machine learning methods, which in

mailto:semerikov@gmail.com

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

2

the general case are reduced to problems of finding the extremum of a multidimensional function
along the nonlinear response surface.

Currently, computing devices capable of performing quantum computing (quantum computers) are
available for consumers of computing services using the QCaaS (quantum computing as a service)
model. As of June 2020, the maximum number of qubits available for simultaneous use does not
exceed 60, which is significantly less than the number required to achieve “quantum supremacy”. This
raises the problem of investigating the possibilities of quantum programming for machine learning
tasks implementation, namely, the use of machine learning algorithms, implemented by the quantum
programming language, to analyze traditional data and compare the performance of quantum and von-
neumanns implementations at the present stage of their development.

The aim of the research is to carry out a comparative analysis of the implementation of quantum-
enhanced machine learning algorithms in the quantum programming language.

To achieve the goal of the study, the following tasks were set:
1. Analyze Quantum Software Engineering tools in order to select a tool that is appropriate for the

implementation of machine learning tasks.
2. Consider quantum-enhanced machine learning algorithms.
3. Conduct a comparative analysis of the efficiency of quantum-enhanced and classical machine

learning algorithms.

2. Fundamentals of Quantum Software Engineering

2.1. Basic research concepts
Quantum computer is a computing device using quantum-mechanical phenomena (superposition,
entanglement, etc.) for data transmission and processing.

Quantum programming is a software development process for quantum computer.
«Classical» applications of quantum computers (by Richard Feynman) – modeling complex

[many-particle physical] systems: Zalka and Wiesner’s algorithm.
«New» applications of quantum computers are tasks that require enumerating a large number of

options: Grover's algorithm (general task), Shor's algorithm (factorization), Abrams and Lloyd's
algorithm (identification of periodic properties), etc.

Quantum machine learning is an application of machine learning algorithms for quantum data
analysis.

Quantum-enhanced machine learning is the use of machine learning algorithms implemented in the
quantum programming language for the analysis of traditional data.

Software Engineering is a systematic application of engineering approaches to the design,
implementation, testing and documenting of software.

2.2. Concept of Quantum Software Engineering
The first systems presentation of the Quantum Software Engineering concept was made by John Clark
and Susan Stepney in 2002 [4]. Researchers believe that quantum computing cannot be effectively
implemented in the traditional computer Von Neumann architecture, the mathematical model of which
is the Turing machine. The authors [3] refer to the main challenges that Quantum Software
Engineering will face in 2020:

– the question of what a quantum programming language should be – an extension of traditional
languages, a logical programming language in a low-level programming language or a language that
implements a new paradigm;

– the need to develop compilers for quantum programming languages;
– the need to develop new quantum algorithms and define the classes of traditional algorithms that

can be quantised;
– feasibility of developing quantum computer simulators for use on traditional computer systems;

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

3

– despite the fact that quantum execution is in principle unobservable, debugging and testing
techniques are necessary for quantum programming languages;

– quantum algorithms require visualization for their understanding, design, and implementation.
The criteria and success indicators of Quantum Software Engineering proposed by John Clark and

Susan Stepney are summarized in table 1.

Table 1. The criteria and success indicators of Quantum Software Engineering (according to [4]).

Criteria Indicators

It arises from scientific curiosity about the
foundation, the nature or the limits of a
scientific discipline

Quantum computation has broadened the fundamental limits of
computer science and software engineering

The ability to create new engineering
solutions

The physical infrastructure is constantly evolving, each solution
is new

Technological continuity

The existence of high level languages and development
techniques that can be used by computer scientists and software
engineers with only the same style of training they receive today
(so, no need to teach the fundamentals of quantum mechanics to
all)

Research community support Support for all interested in new computing paradigms and new
levels of computing power

International character of research This is a new fundamental area of software engineering

It is generally comprehensible, and captures
the imagination of the general public, as well
as the esteem of scientists in other
disciplines

It is not generally understood, but is known for its worldwide
interpretation

The problem has a long-standing statement,
but has not yet been resolved Formulated by Richard Feynman in the late 1970s.

It promises to go beyond what is initially
possible, and requires development of
understanding, techniques and tools
unknown at the start of the project

Problems exist on every level, from developing a whole new
conceptual paradigm, to building intellectual and simulation
tools

It calls for planned co-operation among
identified research teams and communities

Research is needed in a number of areas (languages, algorithms,
tools, simulation, visualisation, etc.)

It encourages and benefits from competition
among individuals and teams, with clear
criteria on who is winning, or who has won

There need not be a single “winner”, diversity of solutions
should be encouraged, as in classical software engineering, to be
applicable to a range of application domains

It decomposes into identified intermediate
research goals, whose achievement brings
scientific or economic benefit, even if the
project as a whole fails

There are several components of the problem that can be
explored in parallel

It will lead to radical paradigm shift Quantum computing is a radical paradigm shift

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

4

In 2020, Quantum Software Engineering includes such components [19]:
• Paradigms for developing quantum software
• Quantum software design
• Quantum software testing
• Quantum software verification
• Quantum software coding practices
• Quantum software reuse
• Quantum software experimentations
• Quantum software execution
• Industrial applications
• Empirical evaluations
In February 2020, at QANSWER 2020: 1st International Workshop on the QuANtum SoftWare

Engineering & pRogramming, the Talavera Manifesto for Quantum Software Engineering and
Programming [12] was adopted, containing a set of principles and commitments:

Quantum Software Engineering
– is agnostic regarding quantum programming languages and technologies;
– embraces the coexistence of classical and quantum computing, and advocates the use of

reengineering techniques to integrate new quantum algorithms with the existing classical information
systems. Reverse engineering techniques are also needed to parse and abstract quantum program
information that is to be integrated into classical programs;

– supports the management of quantum software development projects, delivering quantum
software that fulfils the initial business goal and requirements, while at the same time ensuring that
quality, time, and cost constraints are being properly observed; methodologies for developing quantum
programs must be created or adapted from the existing ones; effort estimation methods for quantum
software development need to be provided as well;

– considers the evolution of quantum software: quantum software should be maintained and
evolved from inception to removal, and quantum software evolution must be handled throughout the
whole quantum software lifecycle;

– aims at delivering quantum programs with desirable zero defects: It is in charge of defining and
applying testing and debugging techniques to quantum programs in such a way that most defects can
be detected and solved before the program is released;

– assures the quality of quantum software: quality management for both process and product are
essential if quantum software with expected quality levels is to be produced; since we cannot improve
what we cannot measure, new metrics for quantum programs and quantum processes have to be
developed;

– promotes quantum software reuse, helping development teams to share, index, and find quantum
software that can be reused: this requires study of design and architectural patterns for quantum
programs, facilitate technical communication, and work on creating libraries of reference examples
and application demonstrations;

– addresses security and privacy by design: quantum information systems must be secure and
guarantee the privacy of data and of users from the initial phases of quantum software development,
i.e., by design;

– covers the governance and management of software: managers should be aware of the particular
processes, organizational structures, principles, policies and frameworks, information, culture, ethics
and behaviour, people, skills and competences, as well as the services, infrastructure and applications
that are associated with quantum software and that are (or should be) provided by organizations.

The authors of the manifesto separately appeal to educators with a request to integrate quantum
software engineering in curricula within the existing software engineering degrees and/or courses in
this or other disciplines, and clearly specify which competences and skills are required for future
quantum software engineers [15].

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

5

2.3. Quantum Software Engineering tools
The execution of quantum programs on personal computer equipment is difficult to access due to its
lack of prevalence, so for more than a quarter-century, quantum simulators – software tools that
simulate quantum circuits – have been the main means of their execution. The first mention of QCaaS
(Quantum Computing as a Service) occurs only in 2015 in the article [20] by Mijanur Rahaman and
Md. Masudul Islam.

The world's largest QCaaS providers:
– D-Wave Systems Inc. (Canada) – SDK Ocean [6] (Python, C++);
– International Business Machines Corporation (USA) – SDK ProjectQ [22] (Python), Qiskit [17]

(Python);
– Cambridge Quantum Computing Limited (Great Britain) – SDK t|ket> [2] (Python);
– QC Ware, Corp. (USA) – SDK Forge (Python);
– StationQ - Microsoft (USA) – SDK LIQUi|> [11] (F#), Microsoft Quantum Development Kit

[10] (F#);
– Rigetti Computing (USA) – SDK Forest [21] (Python).
Thus, the main programming language for cloud access to quantum computing is Python. Another

criterion for choosing a QCaaS vendor is computing power, measured in qubits. This indicator is the
largest in D-Wave Advantage – 5000 (in clusters of 8) qubits based on quantum annealing, which
narrows the scope of its application to solving optimization problems, which boil down to finding the
ground state for a set of spins. For universal quantum computers on quantum circuits, the number of
qubits is significantly lower and today (June 2020) is the highest in IBM Q 53 (53 qubits) and Google
Bristlecone (72 qubits). Unfortunately, Google's Quantum Computing Playground [19] is a browser-
based quantum simulator, and there is no open cloud access to Google's Bristlecone. For cloud access
to IBM Q, you can use both their library – Qiskit, and a third-party – ProjectQ. Considering that the
highest level of specialization is provided by its own SDK, Qiskit was chosen for further work.

3. Quantum-enhanced machine learning

3.1. Quantum models of machine learning
Srinivasan Arunachalam and Ronald de Wolf у [1] offer three main quantum learning models:

1. Quantum exact learning based on membership queries to find the most accurate unknown
function (quantum approximation problem). The efficiency of quantum algorithms in relation to
classical ones in this case depends on how the learning efficiency is measured. If the measure of
efficiency is the training time, then there are such classes of functions for which quantum algorithms
are much faster than classical ones, assuming that the queries implementation in a quantum
superposition is possible.

2. Quantum Probably Approximately Correct (PAC) learning to find an unknown function over a
set of samples (quantum supervised learning). The difference between quantum PAC learning and
classical learning is that the dataset can be in a state of quantum superposition.

3. Quantum agnostic learning to search for the (n + 1)-th bit, which is a continuation of a sequence
with n bits (quantum prediction task).

The authors point to three types of complexity that arise when applying quantum learning
models [1]:

a) query complexity of quantum exact learning: the number of quantum membership queries
needed to exactly learn a target concept can be polynomially smaller than the number of classical
membership queries, but not much smaller than that;

b) sample complexity: for the distribution-independent models of PAC and agnostic learning,
quantum examples give no significant advantage over classical random examples: for every concept
class, the classical and quantum sample complexities are the same up to constant factors. In contrast,
for some fixed distributions (e.g., uniform) quantum examples can be much better than classical
examples;

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

6

c) time complexity: there exist concept classes that can be learned superpolynomially faster by
quantum computers than by classical computers, for instance based on Shor’s or Simon’s algorithm.

In the case of applying quantum machine learning models to the analysis of traditional data, we are
talking about quantum-enhanced machine learning. Frank Phillipson [11] defines three main benefits
of quantum machine learning:

– improving runtime (for example with a quantum hybrid Helmholtz machine);
– learning capacity improvements (for example with a quantum Hopfield neural network);
– learning efficiency improvements: less training information or simpler models needed to produce

the same results or more complex relations can be learned from the same data.
Various methods can be applied to increase the efficiency of training, one of which is variational

quantum circuits – VQC [14].
Evidence of the intensity of quantum-enhanced machine learning development is the fact that the

systematic review of the problem in 2016, carried out by Peter Wittek in [23], today (June 2020) is
already considered as a classic, and that is indicated by the co-author in a new review [5].

Vedran Dunjko and Peter Wittek also highlight such perspective directions in the development of
quantum machine learning in general:

а) supervised and unsupervised learning: continuous-variable quantum neural networks, quantum
convolutional neural networks, quantum algorithms for feedforward neural networks, Bayesian deep
learning, sublinear quantum algorithms for training linear and kernel-based classifiers;

б) reinforcement learning: quantum algorithms for solving dynamic programming problems
(including hidden quantum Markov models), quantum gradient estimation.

The authors conclude that “the entire field of “genuinely quantum” machine learning (where the
data itself is quantum) is still finding its right place and full recognition. Perhaps as quantum
technologies mature, and problems of quantum learning become genuinely practical, the field will
crystallize and grow. ... In summary, QML [quantum machine learning] is diverse, growing, inclusive,
and it is rich in open questions. ... Capturing all the QML trends, which will in the end be central is,
for the time being, an impossible task – and, in a way, this is the key message of this note” [5].

3.2. An overview of quantum-enhanced machine learning tools in Qiskit
Qiskit provides the ability to develop quantum software both at the quantum circuits level using
OpenQASM [16] and at a high level of abstraction using Python in a Jupyter notebook. The main
components of the library are:

– quantum circuits modeling tools (Terra);
– implementation of standard quantum algorithms (Aqua – Algorithms for QUantum Applications),

in particular, for solving optimization tasks;
– cloud quantum computing tools (Aer);
– tools for simulating quantum noise (Ignis).
Aqua includes modules for research in finance (qiskit.finance), machine learning (qiskit.ml),

optimization (qiskit.optimization) and chemistry (qiskit.chemistry) [16].
The machine learning module contains standard datasets and ways to access custom. Various

optimization algorithms can be used to process them:
ADMMOptimizer – an implementation of the ADMM-based heuristic (ADMM – alternating

direction method of multipliers);
CobylaOptimizer – the SciPy COBYLA optimizer (COBYLA – Constrained Optimization BY

Linear Approximation);
CplexOptimizer – the CPLEX optimizer for linear, integer and quadratic programming tasks;
GroverOptimizer – uses Grover Adaptive Search (GAS) to find the minimum of a QUBO function

(QUBO – quadratic unconstrained binary optimization);
MinimumEigenOptimizer – minimum eigen solvers;
RecursiveMinimumEigenOptimizer – a meta-algorithm that applies a recursive optimization.

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

7

The qiskit.aqua.components.optimizers module offers a set of algorithms for local (Analytic
quantum gradient descent optimizer, constrained optimization by linear approximation optimizer,
Nelder-Mead optimizer, Nakanishi-Fujii-Todo algorithm, Powell optimizer, truncated Newton
optimizer, etc.) and global optimizations (controlled random search with local mutation optimizer,
evolutionary optimizer, etc.). It is advisable to use quantum support vector machine (QSVM) and
variational quantum classifier (VQC) algorithms to solve classification tasks.

4. Experimental verification of the efficiency of quantum-enhanced machine learning
algorithms
When implementing quantum computing on real architectures, in addition to the classical decoherence
problem, which significantly limits the running time of quantum algorithms (70-150 μs for a 20-qubit
IBM Q System One with a maximum number of simultaneously entangled qubits equal to 6), it is also
necessary to take into account error reading the results. The authors [9] provide the following values
for quantum computers accessible via QCaaS (table 2).

Table 2. Characteristics of common quantum computers (according to [12]).

Machine Qubits 2Q
gates

Coherence
time (us)

1Q
error,

%

2Q
error,

%

Read
output,

%
Qubit topology

IBM Q5
Tenerife 5 6 40 0,2 4,76 6,21

IBM Q14
Melbourne 14 18 30 1,19 7,95 9,09

IBM Q16
Rüschlikon 16 22 40 0,22 7,14 4,15

Rigetti
Agave 4 3 15 3,68 10,8 16,37

Rigetti
Aspen1 16 18 20 3,43 8.92 5,56

Rigetti
Aspen3 16 18 20 3,79 5,37 6,65

UMD
Trapped Ion 5 10 1,5∙106 0,2 1,00 0,6

Thus, at the current state of quantum technologies development, it is necessary to use such data

sets, the processing steps of which by quantum-enhanced machine learning algorithms correspond to
the requirements of the chosen platform – IBM Q.

Machine learning was performed on the wine and breast_cancer datasets using the Qiskit
(quantum-enhanced machine learning) and sklearn (classical machine learning) libraries. Testing was
performed on a local two-qubit quantum simulator with 8 GB of RAM and servers ibmqx2 (2 qubits),

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

8

ibmq_16_melbourne (16 qubits), ibmq_vigo, ibmq_london and ibmq_burlington (all 5 qubits). The
machine learning procedure was repeated 6 times for each dataset. The results are presented in table 3.

Table 3. Experimental verification of the efficiency of machine learning on quantum and traditional

architectures.

Server
Time of quantum-enhanced machine learning

(s)
Time of classical machine learning

(s)
wine breast_cancer wine breast_cancer

ibmqx2

24.8
24.7
24.5
24.6
24.8
24.7

18
18.1
17.9
18.1
18.1
17.8

0.021
0.021
0.026
0.026
0.026
0.026

0.027
0.027
0.026
0.027
0.027
0.026

ibmq_16_melbourne

25
25.2
25.2
25.1
25.2
24.8

18.9
18.7
10.2
10.2
18

18.9

ibmq_vigo

28.3
28.3
28.1
28

26.9
28.3

20.4
20.4
20.4
20.7
20.4
20.7

ibmq_london

26.1
26.2
26.5
26.5
26.3
26.2

19.4
19.3
19.6
19.5
19.4
19.7

ibmq_burlington

27.3
27.1
26.7
27.1
27

27.1

20.4
20.4
20.3
20.5
20.3
20.1

local quantum
simulator

111
105.1
102.8
103.5
111.2
99.9

22.2
23.3
32.7
31.7
22.4
22.1

0.190
0.020
0.028
0.021
0.020
0.022

0.021
0.023
0.021
0.021
0.026
0.021

When using sklearn on IBM Q Experience, there was no way to determine on which server the

execution was occurring – multiple repetitions of tests at different times of the day did not lead to a
significant change in the results.

The code for all types of tests is presented in appendices A, B, C.
Analysis of Table 3 allows us to conclude that at the current stage of quantum technologies

development traditionally machine learning provides greater performance than quantum-enhanced. At
the same time, quantum-enhanced machine learning algorithms turned out to be inversely sensitive to
the complexity of the dataset: training on a more complex dataset breast_cancer (30 inputs, 2 outputs,
569 elements) was performed at a higher speed than training on a less complex data set wine

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

9

(13 inputs parameters, 3 outputs, 178 elements), while a direct relationship was observed for classical
machine learning, confirmed by [2] and other sources. The results of the analysis give an opportunity
to make the assumption that it is advisable to apply quantum-enhanced machine learning to datasets
with a large input dimension, the assumed value for which is the probability of choosing one of two
sets of classes – such classes are effectively worked out by single-qubit systems.

5. Conclusions
1. The core of Quantum Software Engineering is quantum programming – the process of

developing programs for a quantum computer: a computing device that uses the phenomena of
quantum mechanics to process data. Due to the low level of availability of such devices, it is advisable
to access them under QCaaS model (quantum computing as a service). The conducted review of
Quantum Software Engineering tools provided an opportunity to single out their main classes
(quantum simulators, libraries, visualizers and cloud quantum services) and recommend using IBM Q
as a hardware platform for quantum computing, Qiskit as a library of quantum algorithms, Python as a
programming language and IBM Quantum Experience as QCaaS Provider.

2. The use of machine learning algorithms for the analysis of quantum data can be described by
three quantum machine learning models (quantum exact learning, quantum Probably Approximately
Correct learning and quantum agnostic learning), in the application of which there are three types of
difficulties associated with the query complexity of quantum exact learning, quantum the intricacy of
datasets and the sensitivity of quantum algorithms to them. A prospective direction in the machine
learning development is the use of quantum learning models for analyzing traditional data, the
implementation of which in Qiskit Aqua 0.7.3 is still a limited solution to classification tasks.

3. The results of an experiment using a variational quantum classifier on two datasets showed that
at the current stage of quantum technologies development, classical machine learning provides greater
performance than quantum-enhanced machine learning. At the same time, the use of quantum-
enhanced machine learning algorithms for the binary classification tasks, even with a high dimension
of the input data, gives a significant (several times) acceleration compared to the ternary classification
tasks, while when using classical machine learning, the execution time increased depending on the
volume dataset and their dimensions. The analysis of the experimental results provides an opportunity
to make an assumption that quantum-enhanced machine learning is advisable to apply to datasets with
a large input dimension, the assumed value for which is the probability of choosing one of two sets of
classes – such classes are efficiently processed by one-qubit systems.

Prospects for further research are in a systematic study of the capabilities of Quantum Software
Engineering and its applications to solving forecasting problems.

Appendix A. Code for quantum-enhanced machine learning on the wine dataset
(ibmq_burlington server, 5 qubits)
Importing standard Qiskit libraries and configuring account
from qiskit import QuantumCircuit, execute, Aer, IBMQ
from qiskit.compiler import transpile, assemble
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from qiskit import BasicAer
from qiskit.aqua import QuantumInstance, aqua_globals
from qiskit.aqua.algorithms import VQC
from qiskit.aqua.components.optimizers import COBYLA
from qiskit.aqua.components.feature_maps import RawFeatureVector
from qiskit.ml.datasets import wine
from qiskit.circuit.library import TwoLocal
import time

Loading your IBM Q account(s)
provider = IBMQ.load_account()

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

10

from qiskit import BasicAer
from qiskit.aqua import QuantumInstance, aqua_globals
from qiskit.aqua.algorithms import VQC
from qiskit.aqua.components.optimizers import COBYLA
from qiskit.aqua.components.feature_maps import RawFeatureVector
from qiskit.ml.datasets import wine
from qiskit.circuit.library import TwoLocal
import time

seed = 1376
aqua_globals.random_seed = seed

Use Wine data set for training and test data
feature_dim = 4 # dimension of each data point
_, training_input, test_input, _ = wine(training_size=12,
 test_size=4, n=feature_dim)

instance = QuantumInstance(provider.get_backend('ibmq_burlington'),
 shots=1024, seed_simulator=seed, seed_transpiler=seed,
 skip_qobj_validation=True)
feature_map = RawFeatureVector(feature_dimension=feature_dim)
start_time = time.time()
vqc = VQC(COBYLA(maxiter=100),
 feature_map,
 TwoLocal(feature_map.num_qubits, ['ry', 'rz'], 'cz', reps=3),
 training_input, test_input)
result = vqc.run(instance)

print('Testing accuracy: {:0.2f}'.format(result['testing_accuracy']))
print(result)

print("--- %s seconds ---" % (time.time() - start_time))

Appendix B. Code for quantum-enhanced machine learning on breast_cancer dataset (local
quantum emulator, 5 qubits)
from qiskit import BasicAer
from qiskit.aqua import QuantumInstance, aqua_globals
from qiskit.aqua.algorithms import VQC
from qiskit.aqua.components.optimizers import COBYLA
from qiskit.aqua.components.feature_maps import RawFeatureVector
from qiskit.ml.datasets import breast_cancer
from qiskit.circuit.library import TwoLocal
import time
import random

seed = 1376
aqua_globals.random_seed = seed

Use Wine data set for training and test data
feature_dim = 2 # dimension of each data point
X_train = []
Y_train = []
_, training_input, test_input, _ = breast_cancer(training_size=12,
 test_size=4, n=feature_dim)
instance = QuantumInstance(BasicAer.get_backend('statevector_simulator'),
 shots=1024, seed_simulator=seed, seed_transpiler=seed)

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

11

feature_map = RawFeatureVector(feature_dimension=feature_dim)
start_time = time.time()
vqc = VQC(COBYLA(maxiter=100),
 feature_map,
 TwoLocal(feature_map.num_qubits, ['ry', 'rz'], 'cz', reps=3),
 training_input, test_input)
result = vqc.run(instance)

print('Testing accuracy: {:0.2f}'.format(result['testing_accuracy']))
print(result)

print("--- %s seconds ---" % (time.time() - start_time))

Appendix C. Classical machine learning code on breast_cancer dataset
import numpy as np
from sklearn.datasets import load_wine
from sklearn.svm import SVC
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris, load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.svm import LinearSVC, SVC
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV
import time
import pandas as pd

Load data
x,y = load_breast_cancer(return_X_y=True)

data = load_wine()
df = pd.DataFrame(data['data'], columns=data['feature_names'])
df['Target'] = data['target']
X = df.drop('Target', axis=1)
y = df['Target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
random_state=1376)

start_time = time.time()
svc = SVC(kernel="linear", C=0.025)
svc.n_iter_ = 100
svc.fit(X_train, y_train)
test_predictions = svc.predict(X_test)
train_predictions = svc.predict(X_train)
print("Train:")
print(classification_report(y_train, train_predictions))
print("Test:")
print(classification_report(y_test, test_predictions))
print("--- %s seconds ---" % (time.time() - start_time))

References
[1] Arunachalam S and de Wolf R 2017 A Survey of Quantum Learning Theory Preprint

arXiv:1701.06806 [quant-ph]
[2] Cambridge Quantum Computing 2020 Technology URL

https://cambridgequantum.com/technology/
[3] Cheng C H and Wei L Y 2007 New entropy clustering analysis method based on adaptive

https://cambridgequantum.com/technology/

ICon-MaSTEd 2020
Journal of Physics: Conference Series 1840 (2021) 012021

IOP Publishing
doi:10.1088/1742-6596/1840/1/012021

12

learning Proc. of the 10th Joint Conf. on Information Sciences 2007 ed P P Wang pp 1196–
1202 URL https://doi.org/10.1142/9789812709677_0169

[4] Clark J and Stepney S 2002 Quantum Software Engineering Workshop on Grand Challenges for
Computing Research (Edinburgh: e-Science Institute) URL
http://www.ukcrc.org.uk/press/news/call/a5.cfm

[5] Dunjko V and Wittek P 2020 A non-review of Quantum Machine Learning: trends and
explorations Quantum Views 4 32 doi:10.22331/qv-2020-03-17-32

[6] D-Wave Systems Inc 2021 D-Wave Ocean Software Documentation URL
https://ocean.dwavesys.com/

[7] Gartner 2021 Quantum Computing Gartner Glossary URL
https://www.gartner.com/en/information-technology/glossary/quantum-computing

[8] Google 2016 Quantum Computing Playground URL http://www.quantumplayground.net
[9] Lehka L V and Shokaliuk S V 2018 Quantum programming is a promising direction of IT

development CEUR Workshop Proceedings 2292 76–82
[10] Microsoft 2021 Microsoft Quantum Documentation and Q# API Reference - Microsoft

Quantum URL https://docs.microsoft.com/en-us/quantum/
[11] Microsoft Research 2016 Language-Integrated Quantum Operations: LIQUi|> URL

https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-
liqui/

[12] Murali P, Linke N M, Martonosi M, Javadi-Abhari A, Nguyen N H and Alderete C H 2019
Full-Stack, Real-System Quantum Computer Studies: Architectural Comparisons and Design
Insights ISCA'19: Proc. 46th Int. Symp. on Computer Architecture pp 527–40 URL
https://doi.org/10.1145/3307650.3322273

[13] Panetta K 2019 The CIO’s Guide to Quantum Computing Smarter With Gartner URL
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-quantum-computing/

[14] Phillipson F 2020 Quantum Machine Learning: Benefits and Practical Examples CEUR
Workshop Proceedings 2561 51–6

[15] Piattini M, Peterssen G, Perez-Castillo R, Hevia J L, Serrano M A, Hernández G, de Guzmán I
G R, Paradela C A, Polo M, Murina E, Jiménez L, Marqueño J C, Gallego R, Tura J,
Phillipson F, Murillo J M, Niño A and Rodríguez M 2020 The Talavera Manifesto for
Quantum Software Engineering and Programming CEUR Workshop Proceedings 2561 1–5

[16] Pistoia M and Gambetta J 2018 Qiskit Aqua – A Library of Quantum Algorithms and
Applications Medium URL https://medium.com/qiskit/qiskit-aqua-a-library-of-quantum-
algorithms-and-applications-33ecf3b36008

[17] Qiskit 2021 Qiskit URL https://qiskit.org/
[18] Qiskit 2021 Qiskit/openqasm: Gate and operation specification for quantum circuits GitHub

URL https://github.com/Qiskit/openqasm
[19] Q-SE2020 2020 First International Workshop on Quantum Software Engineering (Q-SE 2020)

co-located with ICSE 2020 URL https://q-se.github.io/qse2020/
[20] Rahaman M amd Islam M M 2015 A Review on Progress and Problems of Quantum Computing

as aService (QCaas) in the Perspective of Cloud Computing Global Journal of Computer
Science and Technology: B Cloud and Distributed 15 URL
https://globaljournals.org/GJCST_Volume15/3-Cloud-Data-Storage.pdf

[21] Rigetti Computing 2020 Rigetti QCS URL https://qcs.rigetti.com/sdk-downloads
[22] Steiger D and Häner T 2017 ProjectQ – Open Source Software for Quantum Computing URL

https://projectq.ch/
[23] Wittek P 2016 Quantum Machine Learning: What Quantum Computing Means to Data Mining

(San Diego: Academic Press) p 176

https://doi.org/10.1142/9789812709677_0169
http://www.ukcrc.org.uk/press/news/call/a5.cfm
https://ocean.dwavesys.com/
https://www.gartner.com/en/information-technology/glossary/quantum-computing
http://www.quantumplayground.net
https://docs.microsoft.com/en-us/quantum/
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-
https://doi.org/10.1145/3307650.3322273
https://www.gartner.com/smarterwithgartner/the-cios-guide-to-quantum-computing/
https://medium.com/qiskit/qiskit-aqua-a-library-of-quantum-
https://qiskit.org/
https://github.com/Qiskit/openqasm
https://q-se.github.io/qse2020/
https://globaljournals.org/GJCST_Volume15/3-Cloud-Data-Storage.pdf
https://qcs.rigetti.com/sdk-downloads
https://projectq.ch/

