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Abstract. The instability of the price dynamics of the energy market from a theoretical point of 

view indicates the inadequacy of the dominant paradigm of the quantitative description of 

pricing processes, and from a practical point of view, it leads to abnormal shocks and crashes. 

A striking example is the COVID-stimulated spring drop of spot prices for crude oil by 305% 

to $36.73 a barrel. The theory of complex systems with the latest complex networking 

achievements using pragmatically verified econophysical approaches and models can become 

the basis of modern environmental science. In this case, it is possible to introduce certain 

measures of complexity, the change in the dynamics of which makes it possible to identify and 
prevent characteristic types of critical phenomena. In this paper, the possibility of using some 

econophysical approaches for quantitative assessment of complexity measures: (1) 

informational (Lempel-Ziv measure, various types of entropies (Shannon, Approximate, 

Permutation, Recurrence), (2) fractal and multifractal (Multifractal Detrended Fluctuation 

Analysis), (3) recurrent (Recurrence Plot and Recurrence Quantification Analysis), (4) Lévy’s 

stable distribution properties, (5) network (Visual Graph and Recurrence based) and (6) 

quantum (Heisenberg uncertainty principle) is investigated. Each of them detects patterns that 

are general for crisis states. We conclude that these measures make it possible to establish that 

the socially responsive exhibits characteristic patterns of complexity and the proposed 

measures of complexity allow us to build indicators-precursors of critical and crisis 

phenomena. Proposed quantitative measures of complexity classified and adapted for the crude 
oil market. Their behavior in the face of known market shocks and crashes has been analyzed. 

It has been shown that most of these measures behave characteristically in the periods 

preceding the critical event. Therefore, it is possible to build indicators-precursors of crisis 
phenomena in the crude oil market. 
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1.  Introduction 

For achieving solutions in sustainability development, we need long-term potential actions. Recent 

advances in this aspect have contributed to successful solutions to real problems, thus improving the 
sustainability of energy, the environment, and the quality of life. Therefore, the focus of attention is on 

modern theoretical approaches and tools to problems in sustainable energy, with modeling, analysis, 

and control problems, communication systems, process control, environmental systems, intelligent 
manufacturing systems, transportation systems, structural systems, and so forth [32, 85, 132, 170]  

The world and worldwide energy industry have experienced a significant impact during the global 

coronavirus pandemic. Although it has reminded the importance of energy, even before, the expert 

energy community was discussing the novel era for global energy [224].  
In the last decade, there has been a growing body of literature addressing the utilization of complex 

network methods for the characterization of dynamical systems based on time series. While both 

nonlinear time series analysis and complex network theory are widely considered to be established 
fields of complex systems sciences with strong links to nonlinear dynamics and statistical physics, the 

thorough combination of both approaches has become an active field of nonlinear time series analysis, 

which has allowed addressing fundamental questions regarding the structural organization of nonlinear 
dynamics as well as the successful treatment of a variety of applications from a broad range of 

disciplines [181, 242]. 

Financial and spot markets, as a complex system, have been attracting the attention of many 

scientists like engineers, mathematicians, physicists, and others for the last two decades. Such vast 
interest transformed into a branch of statistical mechanics – econophysics [6, 131]. The integration of 

different methods from physics, economics, mathematics, engineering, and computer science has led 

to interdisciplinary area of science where knowledge, methodologies, and tools of different fields are 
applied for modeling, explaining, and forecasting economic and social phenomena.  

Econophysics, based on a rich arsenal of research on critical phenomena [197], very successfully 

copes with the description of similar events in economics and finance. These are crises and crashes 

that are constantly shaking the world economy. The introduced measures of complexity should, to one 
degree or another, respond to such phenomena. 

The key idea here is the hypothesis that the complexity of the system before the crashes and the 

actual periods of crashes must change [20, 21, 23, 44, 49, 183, 184, 186-191, 193]. This should signal 
the corresponding degree of complexity if they are able to quantify certain patterns of a complex 

system. Introduced measures are dynamic and could be applied along with a diagnosable time series 

whose abnormal changes could be detected and prevented.  
In addition to a few methodological similarities, there are also many important differences such as 

emphasis by econophysicists on statistical mechanics rather than mechanical models, reservations 

towards rational agent theory, and rejection by of many standard assumptions of mainstream 

economics, etc.  
It cannot be said that econophysical ideas were not considered in the theory and practice of 

sustainable development. The paper [165] outlines the “ecological econophysics” that could be 

scientifically more suitable than mainstream economics. The authors of the work [59] applied 
econophysical methodologies (in particular multifractal analysis) to S&P Global Clean Energy Index, 

New York Stock Exchange (NYSE), and the price of the crude oil. Empirical results show that the 

clean energy index is much more dependent on crude oil market rather than NYSE. Better 
understanding of clean energy market structure and usage of more reliable instruments for its analysis 

will lead to bigger investments to this sector and, perhaps, make energy production more efficient. 

Econophysical analysis of other indices and indicators of energy sustainability is also a fruitful 

direction [15, 33, 169, 200, 225]. However, for the current period, these problems urgently need 
quantitative assessments of the energy market indicators using the tools of the theory of complex 

systems and econophysics. This work is intended to fill this gap to a certain extent. 

It should be noted that modern machine learning technologies are promising in ensuring the energy 
sustainability of complex systems. Machine learning (ML), a subset of artificial intelligence, refers to 
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methods that have the ability to “learn” from experience, enabling them to carry out designated tasks. 

Examples of machine learning tasks are detection, recognition, diagnosis, optimization, and prediction. 

Machine learning can also often be used in different areas of complex systems research involving the 
identification of the basic system structure (e.g., network nodes and links) and study of the dynamic 

behavior of nonlinear systems (e.g., determining Lyapunov exponents, prediction of future evolution, 

and inferring causality of interactions). Conversely, machine learning procedures, such as “reservoir 
computing” and “long short-term memory”, are often dynamical in nature, and the understanding of 

when, how, and why they can function so well can potentially be addressed using tools from 

dynamical systems theory [204]. 

The calculation and analysis of econophysical measures of complexity will be carried out using the 
example of a time series of daily spot prices for crude oil which is considered to be the most volatile in 

the commodity market [45]. 

On the other hand, the oil market is a complex system and the theoretical approaches developed by 
the theory of complex systems and, in particular, econophysical, are obviously applicable to it. 

The paper is planned in this way. Section 2, we present our classification of WTI crude oil market 

shocks and crashes for the period from January 2, 1986, to September 21, 2020. In Section 3 the 
technique and results of recurrence analysis are described. In Section 4, we describe the information 

measures of complexity. In Section 5, we describe the multifractal analysis methodology and its 

results for the oil market. Section 6 demonstrates how one of the complexity indicators based on 

nonlinear dynamics methods are defined and worked. Section 7 presents the theory and empirical 
results on network measures of complexity and their robustness for crude oil price time series. Section 

8 defines the quantum complexity measure. Section 9 contains conclusions and some 

recommendations for further research. 

2.  Data and classification of oil shocks and crashes  

A large number of academic literature has provided evidence that there is a relationship between oil 

and macroeconomic variables. As a rule, the results suggest that oil prices have a significant impact on 

the world economy and, as an energy active, it also has strategic power in terms of international trade. 
Thus, we advanced into action and set the task (1) to make an appropriate classification of such events 

that are predictable and not predictable and (2) to construct such indicators that will identify in 

advance shocks and crashes in order to allow investors and ordinary users to work in this market. 
Further, the corresponding study will present that oil price is regime-switching. Such switching 

reveals in high risk (completely random) and low risk (deterministic) environments. Such events with 

a high risk are completely unpredictable, their appearance is unexpected and there no patterns that 
would indicate their appearance. Some of those events are much more predictable, less efficient, and 

exhibit corresponding complexity patterns that can serve as indicators of further falling. All the 

mentioned events will be classified and presented on the table.  

The data we use here for our analysis are the daily closing prices of the West Texas Intermediate 
(WTI) crude oil over a period of time from January 2, 1986, to September 21, 2020 [45]. During this 

period, the oil market experienced periods of varying degrees of volatility. The main ones are 

presented in table 1. 

We will call price jumps not exceeding 30% as shocks, all the rest - crashes. Let us analyze how 

econophysical measures of complexity “react” to oil shocks and crashes. Further estimations will be 

applied for the initial time series and its normalized returns which can be calculated as  

 ( ) [ ( ) ] / .g t G t G    (2.1) 

where ( )G t  presents log-returns, and   is the standard deviation of G . 

We predefine the most noticeable of such abnormal phenomena that are the most volatile, 

influential, and reasonable. Their loss in price is noticeable, comparing to other events. 
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Table 1. List of the crude oil market major shocks and crashes since December 1987 till April 2020 

The Date of Beginning Oil High Price, $  The Date of Ending Oil Low Price, $ Falling, % 

23.11.1987 19,31 21.12.1987 15,12 21,70 

20.04.1989 24,62 08.05.1989 19,41 21,16 

14.05.1990 19,73 25.05.1990 16,12 18,30 

07.08.1990 29,60 09.08.1990 25,69 13,21 

16.01.1991 32,25 18.01.1991 20,05 37,83 

21.03.1994 15,37 28.03.1994 14,15 7,94 

25.08.1995 19,91 05.10.1995 16,86 15,32 

22.02.1996 22,14 04.03.1996 19,24 13,10 

26.03.1998 16,92 14.04.1998 15,18 10,28 

21.04.1998 15,57 15.06.1998 11,69 24,92 

25.01.2000 30,28 27.01.2000 27,22 10,11 

20.09.2000 37,22 28.09.2000 30,26 18,70 

12.03.2003 37,87 28.04.2003 25,25 33,32 

18.03.2005 56,80 23.03.2005 49,43 12,98 

13.03.2008 110,21 01.04.2008 100,92 8,43 

21.05.2008 132,99 04.06.2008 122,30 8,04 

22.09.2008 122,61 23.12.2008 30,28 75,30 

29.04.2011 113,39 27.06.2011 90,65 20,05 

01.05.2012 106,17 21.06.2012 77,91 26,62 

20.06.2014 107,95 29.01.2015 44,12 59,13 

16.09.2019 63,10 03.10.2019 52,41 16,94 

03.03.2020 47,27 30.03.2020 14,10 70,17 

17.04.2020 18,31 20.04.2020 -36,98 301,97 

 

The calculations of indicators for them will be carried out within the framework of the algorithm of 
a rolling (sliding, moving) window. According to the procedure, we emphasize the frame of 

predefined length in which the calculation of the corresponding measure is obtained. Then it is shifted 

along the time by a predefined value, and the procedure is repeated until the entire series is exhausted. 
Comparing the calculated measure of complexity and the actual time series of crude oil, we can 

analyze changes of complexity in the system. Our measures can be called indicators or precursors if 

they behave in a specific way for all periods of crashes and shocks, for example, decrease or increase 

during the pre-crash or pre-shock periods. 

3.  Recurrence Analysis 

In 1890 the mathematical foundations of recurrence were introduced by Henri Poincaré, resulting in 

the Poincaré recurrence theorem [164]. This theorem states that certain systems will return to their 
arbitrarily close, or exactly the same initial states after a sufficiently long but finite time. Such 

property in the case of deterministic behavior of the system allows us to make conclusions regarding 

its future development.  
Analysis of the behavior of energy commodities has been a topic of great interest for a long time. 

Such tools as the correlation dimension, the Lyapunov exponents, the BSD statistics, the Kolmogorov-

Sinai (KS) entropy, etc. were used to identify either such prices are presented to be chaotic or not. 

Some research papers proclaim strong evidence of chaos. Others conclude that, for example, crude oil 
future prices exhibit non-linear and complex behavior, but at the same time stochastic process [145]. 

Matilla-García, considering three futures series (natural gas, unleading gasoline, and crude oil), find 

that the presence of chaos could not be rejected for natural gas and crude oil [140]. Barkoulas et al. 
[11] employing correlation dimension, the Lyapunov exponent, and, namely, recurrence plot, found 
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that crude oil cannot be characterized as a deterministic system, and it does not exhibit the recurrence 

properties typical of deterministic nonlinear structures. Mastroeni et al. [138] give some insights into 

the chaotic paradigm and deterministic processes of energy commodity prices. Their results obtained 
with different statistical tests for chaos and, moreover, with the help of recurrence analysis reveal a 

prevalent deterministic feature. Also, recurrence regimes switch between laminar states and periods of 

chaotic behavior. Such different results that were presented years ago and now allow us to assert that 
chaotic and stochastic characteristics coexist in the energy commodity prices.  

Hua X et al. [80] examine the information between carbon and energy markets using a multilayer 

recurrence network. From their method, they obtain an information linkage coefficient to measure the 

linkage relationship between layers that represent different markets. Such an approach represents 
changes in mutual information between energy and carbon prices in different stages. It can be used to 

quantitatively study the formation mechanisms of some markets and even handle a signaling role 

before the distortion of market efficiency.  
In our analysis, we would like to employ characteristic tools of classical recurrence analysis and 

quantification analysis for handling crisis states that lose their deterministic and recurrent properties 

while they occur. 

3.1.  Time Delay Method 

Identification and prediction of the abnormal phenomena of the system is a defiant problem in many 

disciplines, such as economics, meteorology, and seismology where usually the information about the 

system’s properties comes from time series of some univariate experimental data. The basic idea of 
recurrence analysis is based on the extraction of the information about the temporal evolution of 

trajectories which lie on compact attractor in phase space.  

Usually, not all relevant variables can be captured from our observations. Often, only a single 
variable may be observed. Thakens’ theorem [201] ensures that the observational states of the system 

can be expressed through a d - dimensional vector or matrix, where each of its components reflects the 

properties of the whole system. 

For an approximate reconstruction of the original dynamics of the observed system, we project the 

time series onto a Reconstructed Phase Space [53, 91, 154] with the commonly used time delay 
method [91] which relied on the embedding dimension and time delay.  

The embedding dimension the dimensionality of the reconstructed system (corresponds to the 

number of relevant variables that may differ from one system to another. The time delay parameter 

specifies the temporal components of the vector components. As an example, in recurrence analysis, 
Webber Jr and Zbilut [220] recommend setting the embedding dimension between 10 and 20. 

Regarding the analysis of financial systems, values between 1 and 20 for the embedding dimension are 

considered to be reasonable as well as the time delay.  

3.2.  Recurrence Plot 

Recurrence plot (RP) have been introduced to study dynamics and recurrence states of complex 

systems. When we create RP, at first, from recorded time series we reconstruct phase-space trajectory. 

Then, according to Eckmann et al. [52], in terms of Ed - dimensional space, we consider a trajectory 

X( )i  on the reconstructed trajectory. The recurrence plot is an array of dots in a N N  matrix, where 

dot is placed at ( , )i j  whenever X( )j  is sufficiently close to X( )i , and both axes are time axes which 

mathematically can be expressed as  

 ( X( ) X( ) ), for  , 1, ,ijR i j i j N     (3.1) 

where is a norm (representing the spatial distance between the states at times i  and j );   is a 

predefined recurrence threshold, and  is the Heaviside function (ensuring a binary R). As a result, the 

matrix captures a total of 2N  binary similarity values. A synthetic example is presented in figure 3.1.  
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 (a) (b) 

Figure 3.1. Phase portrait (a) and corresponding RP (b) of the crude oil price. 

Maximum distance seems to be a suitable choice to determine the pairwise similarity between two 

vectors. It is often used as it is independent of the phase space dimension, easy to calculate, and allows 

some analytical expression [58, 205, 206]. 
Also, as it can be seen from equation (3.1), the similarity between vectors is determined by a 

threshold  . The choice of 0   ensures that all vectors that lie within this radius are similar to each 

other, and that dissimilarity up to a certain error is permitted [163].  

The fixed radius for recurrent states is the commonly used condition, which leads to equally sized 

 -neighborhoods. The shape in which neighborhoods lie is determined by the distance metric. 

Applying the fixed threshold with the distance metric, we define recurrence matrices that are 

symmetric along the middle diagonal. The self-similarity of the multi-dimensional vectors reflects in 
the middle diagonal which is commonly referred to as line of identity (LOI). In contrast, it is not 

guaranteed that a recurrence matrix is symmetric, if the condition of fixed number of nearest neighbors 

is applied. For specific purposes LOI that responds to trivial recurrence states might be excluded from 
the RP [221]. 

The visualization of trajectories and hidden patterns of the systems is the “destiny” of RP [135, 

222]. The dots within RP, representing the time evolution of the trajectories, exhibit characteristic 

large-scale (homogeneous, periodic, drift, and disrupted [66, 136, 205]) and small-scale (isolated 
recurrence points, diagonal, vertical, and horizontal lines) patterns. 

3.3.  Recurrence Quantification Analysis 

For a qualitative description of the system, the graphic representation of the system suits perfectly. 
However, because of subjective intuition and further interpretation of such large and small-scale 

patterns, additional metrics in term of quantitative analysis, which are based on previously mentioned 

large and small-scale patterns, were introduced by Webber and Zbilut and called recurrence 
quantification analysis (RQA). Later, it has been extended and intensively used by Marwan et al. [136, 

219, 233].  

Usually, first acquaintance with classical RQA starts with recurrence point density, or, as it is 

known, recurrence rate (RR) 

 ,2
, 1

1
.

N

i j

i j

RR R
N 

     

It enumerates the probability that any state of the system will recur. It is the simplest measure that 

is computed by taking the number of the nearest points forming short, spanning row and columns of 

the recurrent plot. It summarizes them and divides by the number of possible points in the recurrence 
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matrix of size 
2N . Higher RR  indicates higher proportion of similar values across time or because 

time series presents very little change in its dynamics. RP can help distinguish such changes in 
qualitative terms, but other measures from quantitative perspectives might give additional information 

about forces driven change in the system.  

The remaining measure relies on the frequency distribution of line structures in the RP. First, we 
consider the distribution of the line length of diagonal structures in the RP 

 

1

1, 1 , ,

, 1 0

( ) (1 ) (1 ) .
lN

i j i l j l i k j k

i j k

P l R R R


     

 

 
     

 
    

The proportion of recurrence points that form line segments of minimal length   parallel to the 

matrix diagonal is the measure of determinism (DET) 

 ( )

,, 1 1

( ) ( )
.

( )

N N

l lu

N N

i ji j l

l P l l P l
DET

R l P l

  

 

 
 



 

 
   

Systems that exhibit deterministic dynamics are mainly characterized by diagonal lines. Long 
diagonal lines indicate periodic signals, but short diagonal lines stand for chaotic behavior. Regarding 

the quantitative analysis, typically, only the lines with minimal length 2   are considered. If 1   

then DET and RR are identical. For some systems, DET becomes more reliable if 2  . Here,   

serves as a filter, excluding the shorter lines. However, it should be noted that too large   may spoil 

the histogram ( )P l  and thus the reliability of DET.  

The results of calculations of window dynamics of the considered recurrence measures are 

presented in figure 3.2. Measures RR and DET are calculated for the entire time series of the oil price 

for window length of 250 days and a step of 5 days.  

 

 a) b) 

Figure 3.2. Dynamics of RR (a) and DET (b) for the oil price time series. 

It is evident that the two recurrent measures during abnormal periods decrease long before the 

actual anomaly. The complex system becomes less recurrent and deterministic which is logical in the 

periods of approaching critical phenomena. Consequently, RR and DET can be used as precursors of 
the critical and crash phenomena. 

A comparative analysis of the measures under consideration revealed an obvious advantage of the 

recursive measure. In addition to the smoothness of the measure itself, it can be calculated for 
windows of small sizes, which leads to inaccurate or incorrect results for other methods.  



ISCSEES 2020
IOP Conf. Series: Earth and Environmental Science 628 (2021) 012019

IOP Publishing
doi:10.1088/1755-1315/628/1/012019

8

 
 

 

 

 
 

4.  Informational measures of complexity 

Complexity is a multifaceted concept, related to the degree of organization of systems. Patterns of 

complex organization and behavior are identified in all kinds of systems in nature and technology. 
Essential for the characterization of complexity is its quantification, the introduction of complexity 

measures, or descriptors [92].  

Complexity is seemed to be very subjective and undefined thing. We may speak about signs of 
complexity considering:  

 the number of components involved into the system; 

 the size of irregularities in the system: the lack of repetitiveness, a large number of 

unorganized interconnections lead to huge complexity;  

 the amount of information (number of bits) of the structure; the amount of space needed for 

object reconstruction, accurate interpretation;  

 the algorithmic complexity of a certain task: minimum time needed to carry out specific task 

on a computer;  

 the communication complexity of a task: the number of bits that have to be transmitted in 
order to solve specific task [28, 116, 208].  

Historically, the first attempt to quantify complexity was based on Shannon's information theory 

[176] and Kolmogorov complexity [95]. 

4.1.  Lempel-Ziv complexity 

The complexity of the information generated from ergodic sources can be calculated with Lempel-Ziv 

complexity (LZC) that links both the concept of complexity (in Kolmogorov-Chaitin sence) and 
entropy rate [24, 243]. With the LZC we can measure the capacity of an ergodic dynamical process to 

generate new patterns. As we performed measurements and obtained a time series of some discrete 

values, we can apply LZC measure that requires low computational costs and gives the entropy rate of 

the measureable phenomena [55, 91]. 
Historically, S Da Silva et al. [40, 42, 68, 69] were the first who applied LZC for financial systems, 

considering the deviation of actual time series for a random as a measure of actual market efficiency in 

absolute [41, 42, 68, 69] or relative [40] terms. Applying this approach to high-frequency tick-by-tick 
return data from 43 companies listened on Bovespa, authors Da Silva and Giglio detect decreasing 

efficiency rate for the majority of the stocks after the financial crisis of 2008 [42]. In [110], authors 

have examined the algorithmic (Kolmogorov) complexity for tracking a transition between regular and 
random patterns in financial systems.   

Some fruitful results were obtained with the LCZ and visibility graph-based analysis [227]. Here, 

they perform comparative analysis of stock market indices and their shuffled versions where their 

complexity is measures. Correspondingly, is was confirmed that proposed model seemed to be 
reasonable and financial indices were presented to be less complex (chaotic) comparing to their 

shuffled versions.  

In this paper [178], multivariate complexity measures, multiscale coarse-graining procedure were 
combined to study self-reproducing chaotic systems which complexity is determined by different 

initial states for its multistability.  

Meanwhile, multiscale types of permutation entropy and LZC are employed to study the 

complexity of the mentioned systems. As results present, multiscale measures make complexity 
analysis better, but need to be careful, as for multivariate time series such multiscale approach on the 

example of permutation entropy presented to be unnecessary. Nevertheless, both measures have 

potential application value in real applications.  
A brief analysis of the problem indicates that the complexity of the crude oil market during a crisis 

have not been studied with the use of LZC. In this section, we use the Lempel-Ziv complexity measure 

and its multiscale version to study this market. In previous papers [23, 41, 69, 76, 183, 191] we tested 
LZC measure for the cryptocurrency market. Current work is dedicated to the crude oil market. 
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Varying dynamics of the corresponding measures should signal about approaching shock or crash 

phenomena [23, 191]. 

4.1.1.  The Concept of Kolmogorov and Lempel-Ziv complexity. The idea of Kolmogorov complexity 
(algorithmic complexity) [95] is to measure the amount of information in the finite objects using the 

theory of algorithms. Speaking about finite size objects, we often consider binary strings and their 

compressed structures. Therefore, approximately, the Kolmogorov complexity of some string x  is the 

amount of information in that string. In other words, a string of repeated patterns where all bits are 

equal to zero, has a very low complexity (presents little information), while completely chaotic string 
becomes hardly compressed and, thus, has a lot of information. In this case, if the complexity of our 

string is equal to k , we expect here k  bits of information. Information about both random and regular 

parts of a string is included to the Kolmogorov complexity.  

Example, considering a 2-part description p  and d , both of which describe regular and random 

sequences of a shortest program for x , the amount of meaningful information is presented to be of a 

size p . Taking into account x  and y  strings, where x  is some regular string and y  is a randomly 

generated string, their shortest programs are presented to be ( , )x xp d  and ( , )y yp d . The Kolmogorov 

complexity of y  is larger than for x , while ( ) | |xKS x p  and ( ) | |yKS y p . Thus, it should be clear 

that most of information content in x  is its regular part, and in y  its irregular part.  

As Kolmogorov complexity was considered to be non-computable, Lempel and Ziv [110] 

suggested a method for computing the complexity of finite size objects. The idea is very similar to 

LZ76 algorithm. Consider a sequence of characters S  composed from alphabet  . Afterwards, we 

can present the sequence synthesis scheme as a concatenation of non-repeatable substrings:  

 1 1 2 1 1( ) (1, ) ( 1, ) . . . ( 1, ) . . . ( 1, ),k k mH S S i S i i S i i S i N       

where 1( 1, )k kS i i  is the substring of S  generated at the 
thk  step, and any factor 1( 1, 1)k kS i i    

that is a substring of the string (1, 1)kS i   is included to an exhaustive history ( )H S  of the sequence 

S . The number of factorized sequences in ( )H S  is the corresponding LZC. The algorithmic 

complexity for a random sequence is calculated by expression / log( )rLZC N N . Then, the 

normalized LZC is defined as  

 .
r

LZC
LZC

LZC
   

For further calculations, the crude oil price subseries of the fixed length is obtained and logarithmic 
returns are calculated. Then, they are transformed into the series of two states (bits). However, except 

two state system, we can specify n-state system. In the case of three states, unlike the binary coding 

system, a certain threshold   is settled, and the states g  are coded as follows [42, 68, 69]: 

 

0 ,

1 ,

2 .

if g

g if b g b

if g b

 


   
 

   

As the financial markets exhibit scale-invariant properties that manifest themselves through the 

power laws of the distribution, the classical LZC procedure is unacceptable and often leads to 
erroneous conclusions. Therefore, the multiscale procedure should help to overcome such difficulties. 

According to the procedure, first of all, we allocate non-overlapping segments of the scale factor 

(length)   and each of those is averaged. Then, we switch to the next scale and repeat the same 

“coarse-graining”, but with larger length of non-intersecting windows [38]. When 1  , the 
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“granular” series is exactly similar to the original one. For 1  , the coarse-grained series follows the 

expression 

 
( 1) 1

1
( ), for 1 / ,

j

j

i j

y g i j N







   

    (4.1) 

with corresponding scale factor . The length of each “granular” row depends on the length of the 

window and is even /N  . The illustration of calculations for one of scales is presented in the figure 

4.1.  

Figure 4.2 presents the results of calculations of multi-scaling LZC measure for scale factor 6  . 

The calculations were performed for a rolling window of 250 days and an increment of 5 days. The 

data in figure 4.2 indicate that the LZC measure is noticeably reduced in the case of averaged over the 

scales from 1 to 6 ( 6m ) for all crashes and critical events in the immediate vicinity of the crisis point.  

As the results of calculations showed, the length of sliding window of 250 days turned out to be 

optimal for the separation of crises and fixing the LZC measure as an indicator. It is decreasing before 

the actual crisis point, signaling about decreasing complexity during such events. 

 

Figure 4.1. Illustration of the coarse-graining procedure for 3   [180]. 

 

Figure 4.2. Comparative dynamics of the oil price and multi-scaling LZC. 
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4.2.  Entropy as a measure of complexity  

Nowadays, the most important quantity that allows us to parameterize complexity in deterministic or  

random processes is entropy. Originally, it was introduced by R Clausius [34], in the context of 
classical thermodynamics, where according to his definition, entropy tends to increase within an 

isolated system, forming the generalized second law of thermodynamics. Then, the definition of 

entropy was extended by Boltzmann and Gibbs [27, 67], linking it to molecular disorder and chaos to 
make it suitable for statistical mechanics, where they combined the notion of entropy and probability. 

After the fundamental paper of Shannon [177] in the context of information theory, where entropy 

denoted the average amount of information contained in the message, its notion was significantly 

redefined. After this, it has been evolved along with different ways and successful enough used for the 
research of economic systems [20, 23, 89, 182-184, 190, 192, 210].  

A huge amount of different methods, as an example, from the theory of complexity, the purpose of 

which is to quantify the degree of complexity of systems obtained from various sources of nature, can 
be applied in our study. Such applications have been studied intensively for an economic behavior 

system. 

In this work [134] it is presented that the complexity of the price varies on different time horizons. 
The empirical results show that the highest market efficiency (randomness) presented to be on small 

time scales up to one or two weeks. For higher time scales, longer than one quarter, the multiscale 

entropy pattern shows changeable entropy levels. During such events as U.S. recessions in the recent 

25Â years, multiscale entropy level is presented to be decreased indicating about their drastically 
reduced level of complexity. Possible extreme events, in terms of the relative market efficiency, are 

analyzed, supposing that due to them short-term but not the long-term market complexity was 

affected. Such novel analysis of oil market can reveal its completely new sides.  
Zou Y et al. [229] propose wavelet entropy-based approach for forecasting model. According to 

their work, they use wavelet entropy algorithm to determine optimal wavelet families and 

decomposition scale to make higher the forecasting performance. In terms of conventional 

performance evaluation criteria for the forecasting accuracy the proposed algorithm outperforms 
traditional models.  

Combining the Symbolic Time Series Analysis with the Shannon entropy, on the example of WTI 

and Brent crude oil indices, Mensi W et al. [2, 144] approve that efficiency degree of both indices 
varies over time and these variations can be detected with corresponding approach. Researchers 

conclude that Shannon entropy can have practical implication for forecasting, portfolio management, 

and hedging crude oil market risks. In periods of indicating low market efficiency, investor can start 
buying/selling when the price is below/above the indicator’s value.  

The presence of patterns within a series is a key criterion in evaluating randomness, so it is 

appropriate to establish such methods that will be based on the different patterns and their repetition 

[48]. In this regard, Pincus described the methodology Approximate entropy (ApEn) [157] to gain 
more detail analysis of relatively short and noisy time series, particularly, of clinical and 

psychological. Its development was motivated by the length constraints of biological data. Since then 

it has been used in different fields such as psychology [158], psychiatry [231], and finance [18, 54, 
107, 123, 156]. Duan and Stanley [51] showed that relying on respective changes in patterns of such 

measures as volatility, ApEn, and Hurst exponent, it is possible to effectively differentiate the real-

world financial time series from random-walk processes. The empirical results prove that financial 
time series are predictable to some extent, and ApEn is appliable indicator of predictability degree in 

financial time series. Alfonso Delgado-Bonal [47] gives evidence of the usefulness of ApEn. The 

researcher quantifies the existence of patterns in evolving data series. In general, his results present 

that degree of predictability increases in times of crisis.  
Efficiency of WTI crude oil market is also discussed here [101]. Kristoufek and Vosvrda discuss 

the contributions of the long-term memory, fractal dimension, and ApEn to the total inefficiency. 

According to their research, regularities in studied 25 commodities are not strongly pronounced. 
Kapica J [93] uses modified ApEn algorithm which is called as Sample entropy to verify the efficient 
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market hypothesis for energy price movement. Results present that the behavior of the price is not 

random. The value of entropy for the brend type of crude oil differs from that which is for random 

time series with normal law distribution. It denotes that the price of crude oil is far predictable than for 
a purely random walk.  

Permutation entropy (PEn), according to the previous approach, is a complexity measure that is 

related to the original Shannon entropy (ShEn) that applied to the distribution of ordinal patterns in 
time series. Such a tool was proposed by Bandt and Pompe [9], which is characterized by its 

simplicity, computational speed that does not require some prior knowledge about the system, strongly 

describes nonlinear chaotic regimes. Also, it is characterized by its robustness to noise [3, 232] and 

invariance to nonlinear monotonous transformations [91]. PEn has become enormous tool for studying 
biomedical or climate time series. Here [8], Bandt studies day-to-day market data with Brownian 

motion. Turning rate and up-down balance parameters are considered and tested with respect to 

Brownian motion for finding changing points in crude oil price.  
Bariviera et al. [10] analyze the information efficiency of the oil price per barrel for 32 years. 

During such long period, different economic events affected the global economy. It is presented that 

with the PEn and permutation statistical complexity it is possible to discriminate different degrees of 
information efficiency that changes regarding some geopolitical events which dovetail with the results 

of previously mentioned papers. According to the paper of Wei-Shing and Sheng-Yu [223], the oil 

price series is presented to be predictable. With calculated PEn, forbidden patterns, and statistical 

measure it is seen that the Brent oil price series has some seasonal behavior, but from 2010 crude oil 
market efficiency becomes apparent. In these papers [79, 228] not only the exact information and scale 

of the time series are considered, but also magnitude of the extracted information. Such approach is 

presented to be more robust, as it can, example, distinguish different markets, while reducing the 
standard deviation of all the markets.  

The combination of entropy and symbolic dynamics turned out to be fruitful for analyzing the 

disorder for the time series of any nature without losing their temporal information. 

4.2.1.  Shannon entropy. The general approach can be described as follows. Formally, we represent 
the underlying dynamic state of the system in probability distribution form P and then the Shannon 

entropy S  with an arbitrary base (i.e. 2, e, 10) is defined as 

 
1

[ ] log .
N

i i

i

S p p


    (4.2) 

Here, in equation (4.2), ip  represents the probability that price i  occurs in the sample’s 

distribution of the oil price time series, and N  is the total amount of data in our system. Dealing with 

continuous probability distributions with a density function ( )f x , we can define the entropy as  

 ( ) ( ) log ( ) .H f f x f x dx





    (4.3) 

According to the approach, the negative log increases with rarer events due to the information that 

is encoded in them (i.e., they surprise when they occur). Thus, when all ip  have the same value, i.e. 

where all values are equally probable, and [P]S  reaches its minimum for more structured time series 

(events that are more certain). Equation (4.3) is obeyed to the same rules as equation (4.2). In figure 

4.3 are the empirical results for Shannon entropy and the oil price time series. 
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Figure 4.3. ShEn dynamics along with the entire time series of the oil price. 

It can be seen from the figure that Shannon’s entropy is rapidly increasing at the very moment of 

the crisis itself and is an excellent indicator of crisis phenomena. 

4.2.2.  Approximate entropy. ApEn determines the probability of similarity of a chosen pattern at the 

given time and the next pattern at the same time. Given the initial time series { ( ) | 1, , }x i i N , a 

non-negative integer Ed N , and a filter r , which is positive real integer, we define embedded 

blocks  

    ( ), ( 1), . . . , ( 1)Ei x i x i x i d      

and  

    ( ), ( 1), . . . , ( 1) .Ej x j x j x j d       

Then we find relative neighborhoods in phase space that are measures by the distance  

 
1, . ..[ ( ), ( )] max {| ( 1) ( 1) |}

Ek dd i j x i k x j k          

between all pairs of ( )i  and ( )j . For further estimations, we need to define the probability to 

find such pairs of patterns, the distance of which does not exceed the specified threshold r  which can 
be calculated as  

  1

1

1
( ) ( ), ( ) ,

( 1)

EE
N dd

i j
E

C r r d i j
N d

 


     
  

   

where ( )   is the Heaviside function which counts the instances where the distance d  is below the 

threshold r .  

Next, we define the logarithmic average over all the vectors of the ( )Ed

iC r  probability as 

 
 

1

1

1
( ) log ( ( ))

1

EE E
N dd d

ii
E

F r C r
N d

 




 
   

and ApEn of a corresponding time series is defined as  

 1( , ) ( ) ( ),E Ed d

EApEn d r F r F r   (4.4) 

i.e., equation (4.4) measures the logarithmic likelihood that sequences of patterns that are close for 

Ed  observations will remain close after further comparisons. Therefore, if the patterns in the sequence 

remain close to each other (high regularity), the ApEn becomes small, and hence, the time series data 
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has a lower degree of randomness. High values of ApEn indicate randomness and unpredictability. But 

it should be considered that ApEn results are not always consistent, thus it depends on the value of r  

and the length of the data series. However, it remains insensitive to noise of magnitude if the values of 

r  and Ed  are sufficiently good, and it is robust to artifacts and outliers. Although ApEn remains 

usable without any models, it also fits naturally into a classical probability and statistics frameworks, 
and, generally, despite its shortcomings, it is still the applicable indicator of system stability, which 

significantly increased values may prognosticate the upcoming changes in the dynamics of the data.  

4.2.3.  Permutation entropy. According to this method, we need to examine “ordinal patterns” that 

consider the order among time series and relative amplitude of values instead of individual values. For 

evaluating PEn, at first, we need to consider a time series { ( ) | 1, . . . , }x i i n  which relevant details can 

be “revealed” in Ed -dimensional vector 

 
( ) [ ( ), ( ), . . . , ( ( 1) )],Ei x i x i x i d     

  

where 1, 2, , ( 1)Ei N d    , and   is an embedding delay of our time delayed vector. By the 

ordinal pattern, related to the time i , we consider the permutation 0 1 1( ) ( , , . . . , )
El di k k k   of 

[0,1, . . . , 1]Ed   where 1 !El d   defined by 

 0 1 1( ) ( ) . . . ( ).
Edx j k x j k x j k           

We will use ordinal pattern probability distribution as a basis for entropy estimation. Further, the 

relative frequencies of permutations in the time series are defined as  

 

 # | ( 1) ; ( ) has type 
( ) ,

( 1)

E l

l

E

s s N d s
p

N d

 




  


 
  

where the ordinal pattern probability distribution is given by { ( ) | 1, . . . , !}l l EP p l d  . The 

Normalized Permutation entropy (denoted by [ ]sE P , where 0 [ ] 1sE P  ) of the corresponding time 

series presented as 

 

!

1

max max

log[ ]
[ ] ,

Ed

l ll
s

p pS P
E P

S S




 


   

whose max ln !ES d  represents the maximum value of [ ]sE P  (a normalization constant), and 

normalized entropy has a range 0 1PEn  . Here, the maximal entropy possible value is realized 

when all !Ed  possible permutations have an equal probability of occurrence (more noise and random 

data). With the much lower entropy value, we get a more predictable and regular sequence of the data. 

Therefore, the PEn gives a measure of the departure of the time series from a complete noise and 

stochastic time series.  
There must be predefined appropriate parameters on which PEn relying, namely, the embedding 

dimension Ed  is paramount of importance because it determines !Ed  possible states for the 

appropriate probability distribution. With small values such as 1 or 2, parameter Ed  will not work 

because there are only few distinct states. Furthermore, for obtaining reliable statistics and better 

detecting the dynamic structure of data, Ed  should be relevant to the length of the time series or less 

[73]. For our experiments, {3, 4}Ed   and {2, 3}   indicate the best results. Hence, in figure 4.4 we 

can observe the empirical results for permutation entropy, where it serves as an indicator-precursor of 

the possible shocks and crashes.  
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 (a) (b) 

Figure 4.4. Pen (a) and ApEn (b) dynamics along with the oil price shocks and crashes. 

Long before the shock (crash), the value of this types of entropy begins to decrease, the complexity 

of the system decreases. This measure, in our opinion, is one of the earliest precursors of the crisis. 

4.2.4.  Recurrence entropy. The corresponding measure of entropy is related to the recurrence 

properties that may be peculiar for the nonlinear complex system and important class of recurrence 
quantifiers are those that try to capture the level of complexity of a signal [37, 49, 192, 193]. In 

accordance with this study, the entropy diagonal line histogram (REn) is of the greatest interest which 

uses the Shannon entropy of the distribution of diagonal lines ( )P l  to determine the complexity of the 

diagonal structures within the recurrence plot. One of the most know quantitative indicators of the 

recurrence analysis can be defined as 

 
max

min

min

( )
( ) ln ( )   and   ( ) ,

( )

l l

Nl l

l l

P l
REn p l p l p l

P l







  


   

where ( )p l  captures the probability of a diagonal line to have the exactly length l , and REn reflects 

the complexity of deterministic structure in the system. Further calculations were provided and 

presented in figure 4.5 for the initial oil time series and its normalized returns.  

 

 (a) (b) 

Figure 4.5. REn dynamics along with initial time series (a) and normalized returns (b) of the entire 

time series of the oil price. 
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All of the informational measures of complexity take a prominent place among other measures of 

complexity. According to our empirical results, the complexity of the system changes in a specific 

way before corresponding shock or crash which unusual behavior is detected by LCZ and different 
versions of Shannon entropy. Their initial validity, transparency, easiness of usage could give us a new 

way of understanding complexity.  

5.  Fractals and multifractals  
Mandelbrot was the first who highlighted the fractal structure of the market price fluctuations [130]. 

According to his pioneering work, they are poorly modeled and described by the so-called random 

walk hypothesis. Crude oil price systems are presented to be nonlinear complex systems that preserve 

chaotic and multiscaling features. Previously, in the field of hydrology, Hurst proposed the Rescaled 
Range (R/S) analysis that focuses on fractal structures [82, 83]. However, Lo [115] discovered that the 

R/S method is sensitive to short-term autocorrelation, which may lead to a bias error of nonstationary 

time series. The popular nowadays detrended fluctuation analysis method (DFA) was proposed by 
Peng et al. [155] to avoid significant long-range autocorrelation false detection [88]. Then, Kantelhardt 

et al. [90] extended DFA approach to its multifractal version (MF-DFA) that for a long time has been 

successfully applied for a variety of financial markets, such as stock [5, 77, 102, 104, 106, 109, 139, 
199, 244], commodity [46. 74, 113, 126, 139], tanker [237], derivative [114], foreign exchange rates 

[30, 151, 153, 168, 213], and electricity markets [152]. An especially interesting application of 

multifractal analysis is measuring the degree of multifractality of time series, which can be related to 

the degree of efficiency of financial markets [143, 209, 216]. 
Podobnik and Stanley in order to study power-law cross-correlations between two non-stationary 

time series [159], extended standard version of DFA to the cross-correlation approach (DCCA). 

Guided by MF-DFA and DCCA approaches, Zhou [239] combined the multifractal and cross-
correlation analyses into MF-DCCA [39]. Then a number of interesting methods have been proposed, 

such as the method of MF-PX-DFA and MF-PX-DMA [167], MF-X-DMA [87], MF-HXA [100], MF-

X-PF [214], etc. Recently, the MF-DCCA method has become a widely applicable tool for the analysis 

of the multifractal characteristics of two cross-correlated nonstationary time series in the financial 
field such as the foreign exchange market [112, 226], the stock market [120, 215, 230], the crude oil 

market [120, 121, 217], carbon market [240, 241], and the commodity market [117]. The relationship 

between mass media and new media is examined by Zhang et al. with the MF-DCCA approach [236] 
and cross-correlation between investor sentiment proxies [235], i.e., fears [43] and Twitter happiness 

sentiment [234] is quantified. 

Along with common multifractal methods, Sattarhoff and Gronwald [175] applied an intermittency 
coefficient for the evaluation of financial market efficiency. According to their study, the larger value 

of this measure, the more inefficient is a market.  

Zhi-Qiang et al. [238] apply detrending moving average analysis and DFA of the WTI crude oil 

price (1983-2012) to investigate its efficiency. As statistical tests present, the market is inefficient if 
consider the whole period. When the time series is divided into three sub-series where such series are 

separated by some meaningful events as the Gulf War and the Iraq War. During the Gulf War, the 

efficiency of the crude oil market was reduced. Splitting it again, in the period of the North American 
Free Trade Agreement, the market seemed to be inefficient in the sub-periods of the Gulf War. With 

the sliding window approach, it can be observed that only when some turbulent event happens, such as 

the oil price crash in 1985, the market presents to be inefficient. The same results were obtained with 
the MF-DFA approach [172] where exactly the multifractal nature of WTI and Brent crude oil was 

studied. According to results, two markets become more and more efficient despite two Gulf Wars 

that, nevertheless, strongly affected the markets. Moreover, it is concluded that not only the broad fat-

tail distribution and persistence are the reason for markets’ multifractal structure, but also other 
factors.  

This study covers three major international crude oil markets (WTI, Brent crude, and OPEC 

reference basket) from January 2, 2003, to January 2, 2014. The MF-DFA approach is applied to 
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extract generalized Hurst exponent for each of the time series. This exponent is used to measure the 

multifractality degree which is used in turn to quantify the efficiency of three markets. The 

comparative results present that all of three markets present signs of multifractality. The most efficient 
is presented to be WTI while OPEC is the least. This implies a large monopoly power behind OPEC 

and reflects a high level of complexity of WTI and Brent which makes them very competitive. 

Multifractal cross-correlation analysis (MFCCA) and detrended cross-correlation coefficient are 
applied to study statistical and multiscaling characteristics of WTI crude oil price in relation to the 

most traded currencies [218]. In most cases, the considered financial instruments are presented to 

follow the inverse cubic law. Crude oil, in the case of cross-correlation analysis, reveals multifractal 

organization, and, as it can be seen, the strongest ties to WTI express the oil extracting countries. The 
degree of these multifractal coupling varies over a studied period. Similar results are described for the 

pairs oil-gas, oil-CO2, and gas-CO2 [65]. Cross-correlations between these pairs obey a power-law and 

are weakly persistent. By employing the rolling window method, they analyze long-term and short-
term market dynamics and obtain that exactly the global financial crisis has the most noticeable 

influence on the market dynamics. Moreover, the same type of procedure was applied for electricity 

and carbon markets [179] where multifractal characteristics are proved, and the reasons of 
multifractality are explained, and for analysis of the actual at this period coronavirus pandemic [86] 

where multifractal and cross-correlation properties between crude oil and selected agriculture future 

markets are studied.  

The analysis of cross-correlations between between the major currency rates, Bitcoin, the DJIA, 
gold price, and the oil crude market was applied with MF-ADCCA method [63]. On its cross-

correlation with the WTI, the Gold, and the DJIA, Bitcoin presented the greatest presence of 

multifractality. Bitcoin presented a different relationship between commodities and stock market 
indices, which had to be taken into consideration when investing. The reason is that over the years the 

currency was traded and over time, it has earned the trust of the community. 

In similar way with our articles [20, 23, 64] where we applied the MF-DFA method to stock 

markets, cryptocurrency, and sustainability data, we use it here to explore the multifractal property of 
the oil price and construct reliable indicator for it. 

5.1.  Multifractal detrended fluctuation analysis (MF-DFA) 

As an extension to the original DFA [156], the multifractal approach [90] estimates the Hurst exponent 

of a time series at different scales. Based on a given time series  ( ) | 1, ,x i i N , the MF-DFA is 

described as follows:  

(i) The profile ( )Y i  (accumulation) is defined as 

 1

( ) ( ( ) ).
i

j

Y i g j g


 
  

(ii) New time series { ( )}Y i is then divided into  int /sN N s
 
non-overlapping time segments of 

equal length s . Since the length of the time series is not always a multiple of s , for taking 

into account the remaining part and, therefore, to use all the elements of the sequence, the 

same procedure is repeated starting from the end of the profile ( )Y i , and the total number of 

segments amount to 2 sN . The data in each interval v  are fitted with a polynomial fit

sY  in 

order to eliminate the local trends, and the variance is computed as  

 
2

2 1

1
( , ) (( 1) ) ( )  ,    for    1, ,   

s fit

vi sF v s s Y v s i Y i s N


         

and 

 
2

2 1

1
( , ) ( ( ) ) ( )  ,   for    1, , 2 .

s fit

s si s sF v s s Y N v N s i Y i s N N


          
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(iii)  Considering the variability of time series and the possible multiple scaling properties, we 

obtain the thq  order fluctuation function by averaging over all segments 
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 
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   (5.1) 

At least, we determine the scaling behavior of the fluctuation function by analyzing log ( )qF s
 
vs 

log s  graphs for each value of q  . Here, ( )qF s
 
is expected to reveal power-law scaling 

 ( )( ) .h q

qF s s    

The scaling exponent ( )h q  can be considered as generalized Hurst exponent, and with 2q   we 

back to the standard DFA approach where (2)h H  is the well-known Hurst exponent. 

For 0.0 (2) 0.5h   we deal with anti-persistency where the process under study tends to decrease 

(increase) after a previous increase (decrease); (2) 0.5h   corresponds to uncorrelated processes 

(random walk behavior) [77]; 0.5 (2) 1.0h   denotes persistency (process that tended to increase 

(decrease) for some period T , continue it for a similar period of time); (2) 1.0h   responds for non-

stationary processes (strong long-range correlations are presented).  

For positive values of q , ( )h q  describes the scaling behavior of time intervals with large 

fluctuations. Large fluctuations are usually characterized by smaller scaling coefficients of ( )h q  
for 

multifractal series. On the contrary, for negative values of q , time intervals with a small variance 
2 ( , )F v s  will dominate. Thus, ( )h q  will describe the scaling behavior of time intervals with small 

fluctuations.  

(iv) Moreover, it is possible to characterize multifractality of a time series in terms of the 

multifractal scaling exponent ( )q  
which is related to the generalized Hurst exponent ( )h q  

from the standard multifractal formalism and given by [146]: 

 .( ) ( ) 1q qh q    (5.2) 

Here, equation (5.2) shows the scaling dependence of small fluctuations for negative 'q s  and large 

fluctuations for positives as the function of q  moments. If equation (5.2) reflects linear dependence on 

q , the studied system is considered to be monofractal. Otherwise, if it has a non-linear dependence on 

q , then the system is multifractal.  

(v)  The different scalings are better described by the singularity spectrum ( )f   which can be 

defined as 

 
( ) ( )

( ) [ ( )] 1   where   ( )
d q dh q

f q h q h q q
dq dq


           

with  - the Hölder exponent or singularity strength and ( )f   - fractal dimension with 

singularities  . Following the methods described above, we present results that reflect multifractal 

behavior of the oil price dynamics.  

Figure 5.1(a) presents function ( )qF s  defined by equation (5.1). The slope changes dependently 

on q , which indicates the multifractal property of a time series. As it was pointed out, multifractality 

emerges not only because of temporal correlation, but also because crude oil price turns out to be fat-

tailed [145], and this distribution could contribute to the multifractality of the time series. The same 

dependence can be observed in the remaining plots. The scaling exponent ( )q  remains non-linear, as 

well as generalized Hurst exponents that can serve as evidence that the oil market exhibits multifractal 

property. 
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The shape of ( )f   resembles an inverted parabola (see figure 5.1(d)) which is an indicator of 

multifractal behavior; furthermore, the degree of complexity is straightforwardly quantified by the 

width of ( )f  , simply defined as max min     , where min  and max  correspond to the minimum 

and maximum values of  . 

In the figure 5.2(a) we present the width of the spectrum of multifractality that changes over time 

accordingly to the sliding window approach. The whole figure consists of both a three-dimensional 

plot (singularity spectrum) and two-dimensional representation of its surface. 

 

 

 (a) (b) 

 

 (c) (d) 

Figure 5.1. The fluctuation function ( )qF s  (a), multifractal scaling exponent ( )q  (b), ( )h q
 
versus q  

of the oil price returns (c), and singularity spectrum ( )f  (d) obtained from MF-DFA for the oil price 

time series.  

In accordance with previous multiscaling indicators, ( )f   remains constant if the system is 

monofractal. As can be observed, in figure 5.2(a) our series exhibits a simple multifractal scaling 

behavior, as ( )f 
 
changes dependently on  , i.e., it exhibits different scalings at different scales. 

Moreover, with the sliding window of 500 days and time step of 5 days, we understand that at 

different time periods oil price dynamics becomes more or less complex. The value of   gives a 

shred of additional evidence on it (see figure 5.2(b)). As we can see, the width of the singularity 

spectrum after the crisis starts to increase, which tells us that more violent price fluctuations are 

usually expected. With the decreasing width of the singularity spectrum, the series is expected to hold 

the trend. As the rule, it reaches its minimum before the collapse of the oil price. 
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 (a) (b) 

Figure 5.2. Changes in the spectrum of multifractality in time (a), and the comparison of the 

corresponding oil price time series and the width of the multifractality spectrum measure (b). 

6.  Lévy alpha-stable distribution  

Modern financial markets are characterized by a rapid flow of information where a huge number of 
transactions between market participants in different time horizons happens. Such interconnectivity of 

different factors leads to uncertainty, abrupt and highly volatile changes, resulting in significant 

deviations of empirical data from normal distribution [13, 162].  

At first, it was introduced by Bachelier that returns of stock prices are obeyed to a normal 

distribution and random walk hypothesis that considered the return over a time scale t  to be the 

consequence of many independent critical-like phenomena [7]. Some stylized facts of daily returns 

[62, 94, 99] reveal that distributions are leptokurtic and, therefore, Gaussian distribution does not fit 

well to the data. Sornette and Lux [118] pronounce that the distribution of such data may be not only 

leptokurtic, but it can also be characterized by fat tails [19, 124, 125, 202]. Thus, it should belong to 
the class of fat-tailed distributions. For the majority of financial markets, it is currently accepted that 

the PDFs for fat tails of absolute normalized returns scale to a power law 

 

(1 )

(1 )

(1 ) for ( )
( ; , , , )

(1 ) for ( )

c x x
f x

c x x









  
   

  

 

 

  


 

 (6.1) 

and their CDF can be expressed as  

 

( ) (1 ) for ( ),

( ) (1 ) for ( ),

P X x c x x

P X x c x x









 

 





   


     

where c  is a constant value [sin( / 2) ( )] /   , and ( )   is the Gamma function. 

The emergence of power-law behavior in price fluctuations is argued to be a consequence of 

underlying complex mechanisms, such as feedback effects and correlations in financial markets [71, 

72, 160, 161]. Some theories associate this phenomenon with market impact and the distribution of 
large investors [61, 62], while other studies model the power-law behavior as a consequence of limited 

information and the true value of companies [96]. Such property is a symptom of self-organization and 

complexity which are prominent for economic systems. In Chakraborty et al. paper [31] it was 
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established that currencies of several frontiers that are outside of inverse cubic law (with an exponent 

of 3 ) belong to the Lévy-stable regime and are expected to be yet emerging and having sudden 

large changes such as crashes and critical events, while those of most developed exhibited inverse 

cubic law. Belov et al. [16], testing the adequacy of the family of stable distributions for financial 

modeling conclude that they are suitable but appropriate stability tests should be made before model 
application.  

Tung-Li and Hai-Chin [211], fitting the daily returns into the Gaussian distribution and estimating 

its parameters, obtain that returns of oil market are slightly left-skewed, positive, and leptokurtic. After 
estimating the peak and the width of the volatility of the log-normal distribution, the crude oil market 

is presented to be volatile market.  

Kateregga et al. [94] explores the theory behind the family of  - stable distributions, fitting them 

to financial asset log-returns data. Here, they present different techniques for estimating parameters of 

this type of distribution, and they argue that empirical characteristic function method performs better 

that maximum likelihood over a wide range of shape parameters, and it has better convergence. 
Besides, they apply the t location-scale distribution and compare it with the general stable distribution, 

showing that the former fails to capture skewness of the data.  

Bautista and Mora [14] use value at risk (VaR) to quantify as best as possible the maximum price 
changes of three type of oil (Brent, WTI, and Mezcla Mexicana (MME)), considering GARCH models 

with three alternative distributions: stable, Student-t generalized, and normal in a period of high 

volatility. According to their results, the VaR-stable model is a more robust and accurate comparing to 
generalized asymmetric and normalized Student t-distributions.  

Gunay and Khaki [75], relying on GARCH and APARCH models under different distributions, 

including alpha-stable, attempt to model volatility of futures for gas, brent oil, and heating oil. Their 

results confirm that the applicability of normal distribution to energy markets is narrow, and risk 
managers should consider alternative types for modelling fat tails in returns.  

For some time, it has been considered that financial markets can be described in term of a normal 

distribution. Later, analysing cotton prices, Benoît Mandelbrot observed that in addition to being non-
Gaussian, the form of a returns distribution remains stable for different time scales, and its tails are 

much heavier comparing to normal distribution [129]. Further empirical evidence allowed Mandelbrot 

and Fama to conclude that such empirical data are better fitted with the stable Lévy regime [111, 128, 

129, 56]. The reasons to use so-called  -stable, stable Paretian or Lévy stable distributions are 

because the central limit theorem [70] points to the importance of using stable laws for properly 
normalized and centered sums of (IID) random variables. Also, that types of distribution are presented 

to be leptokurtic which is in consistency with the heavy tails and asymmetry of distribution. 

6.1.  Lévy’s stable distribution properties 

According to Nolan [150], the distribution can be described in terms of stability if its shape (up to 
scale and shift) retains under addition:  

 1 2

d

n n nX X X c X d      (6.2) 

for some constants 0nc   and nd  , where 1, , nX X  are independent, identical copies of X . 

The class of all laws that satisfy condition (6.2) is presented by 4 parameters: (0,2]  is the index 

of stability or characteristic exponent where a smaller value of   corresponds to more severe tails of 

the distribution (much frequent and larger extreme events). The parameter [ 1,1]  
 
is called the 

skewness parameter of the law. If 0  , the distribution is symmetric. In the case when 0  , it is 

skewed toward the right, otherwise to the left. The last two parameters stand for the scale [0, )    

and ( , )     the location parameters of the distribution, which is also known as the mean or the 

measure of centrality. For the normal distribution   is equal to the standard deviation. Since random 
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variables X  is characterized by four parameters, we will denote  -stable distribution by 

( , , , )S      and write 

 ( , , , ).X S      (6.3) 

As stable distributions do not have analytical expressions for either PDF (except for some cases: 

the Gaussian distribution where 2  ; the Cauchy distribution where 1   and 0  ; the Lévy 

distribution where 1/ 2   and 1  ) or CDF, if a random variable follows (6.3), they can be 

described in terms of characteristic functions (CF) [97]: 

 

exp{ [1 sgn( ) tan( )]}, ( 1),
2

( )
2

exp{ [1 sgn( ) ln ]}, ( 1).

i k k i k

k

i k k i k k

 
   



   



  

 
   


 

Thus, the inverse Fourier transform of the CF that can be expressed in the following form 

 

1
( ) exp( ) ( )

2
f k ikx k dk






 

 

allows us to reconstruct probability density function with a known characteristic function.  

6.2.  Methods for estimation of stable law parameters 

For the last decades a variety of different approaches have been proposed to estimate parameters of 
stable law processes: the approximate maximum likelihood (ML) estimation [29, 149], quantiles 

method [57, 141], fractional lower order moment method [122, 177], method of log-cumulant [148], 

the logarithmic moment method [103] and more. In our study we rely on empirical characteristic 
function method as it is presented to be more accurate and computationally efficient comparing to 

other methods.  

6.2.1.  Empirical Characteristic Function Method. According to the method, our data 

{ | 1, 2, . . . }ix i N  are supposed to be ergodic [4]. Following this assumption, we obtain [212]: 

 
1

1
lim exp( ) exp( ) ( ) .

N

i
N

n

ikx ikx x dx
N







   (6.4) 

where ( )f x  is some integrable function, and ( )x dx  is a measure in a space M .  

Then, to consider characteristic functions, equation (6.4) comes out to be the following ergodic 

equality [212]:  

 
1

1
lim exp( ) exp( ) ( ) ,

N

i
N

n

ikx ikx f x dx
N






   

for which we have  

 
1

1ˆ( ) lim exp( ).
N

i
N

i

k ikx
N


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

   

 

Consequently, for the empirical characteristic function ( )N k  following equation holds:  

 
1

1ˆ ( ) exp( ).
N

N i

i

k ikx
N




    

 

Then, according to Koutrouvelis’[97, 98] regression type from it can be derived that 

 
2

log( log( ( ) )) log(2 ) log( ).k k      (6.5) 
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The imaginary and real parts of ( )k  are given by  

 
I

R
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where 

 

tan , 1,
2
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Suppose I R( ) : arctan( ( ) / ( ))k k k   . Then, in the condition 1  , the ratio of two last equations, 

apart from considerations of principal values, leads to  

 ( ) tan sgn( ) .
2

k k k k
 

 
 

    
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Equation (6.5) depends only on   and  , and it suggests that we estimate these parameters by 

regressing  

 
     

2
log log ( ) log 2 logNy k k     

  

on log( )k   in the model  

 , for  1, 2, . . . , ,l l ly m l L      

where
2ˆlog( log( ( )) )l ly k  , log(2 )m  , log( )l lk  , and l  responds for an error term. The 

proposed real data set for L  (see Koutrouvelis [97], Table I) is given by / 25 ( 1, , )lk l l L  .  

With estimated and fixed parameters   and  , the symmetric parameter   and location parameter 

  can be obtained by linear regression estimation  

 tan sgn( ) , for  1, . . . , ,
2

q q q q qz k k k q Q
 

  
 

    
 

  

where ( ) ( )q N q N qz k l k   , q  denotes an error term, and the proposed real data set for Q  (see 

Koutrouvelis [97], Table II) is / 50 ( 1, 2, , ).qk q q Q   

6.3.  Related studies and corresponding results  

Recently, the use of dynamic indicators, precursors of crashes in stock markets using the parameters of 

a  -stable distribution was proposed by us in the papers [21, 22] and [23]. Moreover, analyzing only 

a crisis of 2008 using a limited set of stock indices [60], authors conclude   to be even more 

convincing indicator comparing to others. During our research, the opposite conclusion was made, i.e., 

both   and   are informative indicators that can be seen in figure 6.1. 

Figures above align our confidence in the relation of shocks and crashes to the heavy tails of the 
distribution. We can see that our parameters start to decrease before corresponding crashes and shocks. 

Such characteristic behavior can serve as an indicator-precursor of such events that are related to fat-

tailness in our data. 
 

 



ISCSEES 2020
IOP Conf. Series: Earth and Environmental Science 628 (2021) 012019

IOP Publishing
doi:10.1088/1755-1315/628/1/012019

24

 
 

 

 

 
 

 

 (a) (b) 

Figure 6.1. Crude oil price time series and estimated for them parameters  (a) and  (b). Vertical 

arrows indicate crashes and shocks. 

7.  Network measures 
Taking into account nonlinearity and nonstationarity of the studied systems, the complex network 

theory, which laid the foundation of a new network paradigm of synergetic [127], is seemed to be 

reasonable approach for studying multivariate properties of financial time series.  
Investigating such systems, we consider their topology, the distribution of nodes and edges, 

robustness, the effects of information dissemination, etc. [1, 12, 35, 147]. Moreover, such networks as 

electrical, transport, information, social, economic, biological, neural, etc. are also complex [19, 26, 
146]. More frequently we can study networks that are interconnected with other networks and form 

hierarchy of different systems converted into network [25, 80].  

Recently, the first papers using the spectral and topological characteristics of dynamic systems 

presented as networks have appeared. Thus, in [166], it has been investigated universal and non-
universal allometric scaling behaviors in the visibility graphs of 30 world stock market indices. It has 

been established that the nature of such behavior is due to the returns distribution that is characterized 

by fat-tails, the nonlinear long-term correlation, and a coupling effect between the set of influential 
factors. Through some topological parameters (density, clustering, assortativity/disassortativity, 

centrality, and degree distribution) which are specific to complex networks are used to analyze the 

changing structure and evolution of global coal trade [198]. The coal trade network is presented to be 
complex (heterogeneous) in terms of connectedness in the network. There is an increasing trend 

overall, although connectivity has started declining since 2010. Centrality measure gives an overview 

of import/export shares, and, as it can be seen, Asian countries the biggest consumers of these energy 

resources according to network indicators.  
Setting up the spot price fluctuation networks of heating oil spot and its futures price fluctuation 

network, the analysis of transformation characteristics between the modes was established [81]. 

Average path length, node strength, and strength distribution, betweenness, etc. were investigated, and 
the function of network similarity was established to analyze networks in more detail. The power law 

distributions of spot and futures price fluctuations present regularity and complexity in different 

periods. Moreover, these systems remain stable and correlated during usual trading days but become 

unstable in the phase of sharp fluctuation. 

7.1.  Methods of converting time series into graphs  

For the past years, interesting algorithms have been developed for transformation the nonlinear time 

series into complex network in order to reveal its primal characteristics by using the topology of the 
network. Such alternative mathematical structure can be revealed with the usage of visibility graph 

(VG) [50, 105]. To reveal the probability of occurrence of similar states in network, techniques from 

RQA [50, 79, 133] can extracted, and then corresponding spectral and topological characteristics of 
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such graph are calculated. Our previous studies consider the idea of such methods [80, 163, 201] for 

identification of critical and crisis phenomena in stock and crypto markets [194-196]. The recurrence 

diagram is easily transformed into an adjacency matrix, by which the spectral and topological 
characteristics of the graph are calculated [194]. Therefore, we will focus on algorithms of the VG 

[105] where each data point of a time series is considered to be a vertex, and an edge is putted between 

two vertexes if the following condition is satisfied 

 ( ) ( ) ( ( ) ( )) .c a
c a b a

b a

t t
x t x t x t x t

t t


  


 (7.1) 

The horizontal visibility graph is an alternative and much simpler algorithm (HVG) [50] in which a 

connection between two data points can be established if ( ), ( ) ( )a b cx t x t x t  for all c such that 

a c bt t t  .  

 

 

Figure 7.1. The idea of converting a time series into graph with visual graph and horizontal visual 

graph algorithms [84]. 

7.2.  Indicators of Spectral and Topological graphs 
Spectral theory of graphs is based on algebraic invariants of a graph - its spectra [207]. The spectrum 

of graph G  is the set of eigenvalues ( )pS G  of a matrix corresponding to a given graph. For adjacency 

matrix A  of a graph, there exists an characteristic polynomial I A  , which is called the 

characteristic polynomial of a graph ( )GP  . The eigenvalues of the matrix A  (the zeros of the 

polynomial I A  ) and the spectrum of the matrix A  (the set of eigenvalues) are called respectively 

their eigenvalues.  
Important derivative characteristic of a spectral graph is the spectral radius - the largest absolute 

value (or complex modulus) of the graph eigenvalues (eigenvalues of the adjacency matrix) that is 

defined as  

 
1

( ) max .i
i n

A 
 

  (7.2) 

Among the topological measures, one of the most important is the node degree D  - the number of 

edges attached to this node and its maximum degree mD . For non-directed networks, the node’s 

degree iD  is determined by the sum  

 ,i ijj
D a   (7.3) 
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where the elements ija  of the adjacency matrix. 

For characterizing the “linear size” of the network, there are useful concepts of mean l  of the 

shortest paths. For a connected network of n  nodes, the average path length (ApLen) is equal to 

 
2

,
( 1)

ij

i j

l l
n n 

  

  (7.4) 

where ijl  - length of the shortest path between the nodes. 

In our previous studies we have adapted, along with various quantitative measures of complexity 
[22, 23, 146, 183, 184, 188, 190, 191, 195], network complexity measures. In this work, from spectral 

measures, we consider important the largest eigenvalue of adjacency matrix ( max – figure 7.2(a)) and 

the average path length (ApLen - figure 7.2(b)) which are in accordance with equations (7.2) and (7.4). 

for cross-recurrent nodes. From the visibility graph, the maximum node degree ( mD - figure 7.3(a)) 

and the average path length (ApLen – figure 7.3(b)) is found.  

Figures 7.2 and 7.3 demonstrates the asymmetric response of the spectral and topological measures 
of network complexity. For the complete series, the calculation parameters are as follows: window 

length of 500 days, step is of 5 days. 

 

 (a) (b) 

Figure 7.2. Largest eigenvalue of adjacency matrix max  (a) and ApLen with recurrence diagrams for 

the crude oil price time series.  

 
 (a) (b) 

Figure 7.3. Maximum node degree mD  (a) and ApLen (b) with VG for the crude oil price time series. 
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Corresponding spectral measures present that pre-crisis periods have the greatest complexity. 

During approaching shock or crash, the complexity of the system decreases, recovering after the end. 

ApLen shows an asymmetrical relationship. During crisis states, the length between nodes increases, 
indicating about approaching shock or crash. 

8.  Quantum precursors 

In the first decade of the 21st century due to the lack of classical econophysics, the application of 
quantum algorithms in finance and economics was extended with the quantum concepts [78, 137, 174, 

186]. 

It is pressing need for economists to discover completely extraordinary and complex models and 

analogies from interconnected disciplines that could deal with the emergence of uncertainty and 
randomness in financial field. While classical econophysics tries to reduce randomness by improving 

our conceptual tools, quantum econophysics integrates randomness in them. It has already been agreed 

that no-intuitive concepts such as uncertainty principle, system wave function, or superposition 
principle are appreciable for description of our world. Even classical econophysical notions of 

Hamiltonian or free energy could be applied to study the dynamics of financial markets. Therefore, 

reconsideration of uncertainty in macro and micro financial phenomena could improve our 
understanding the laws that govern financial systems, how to reproduce them, and how to resist the 

most undesirable ones.   

Consequently, in this section, we would like to present the application of the Heisenberg 

uncertainty principle to the actual oil price dynamics [186, 189]. 

8.1.  Economic analogue of the uncertainty principle 

Modern theoretical physic, according to our study [174], provides ideas for new adequate and useful 

models in socio-economic phenomena and processes. Nowadays, such quantum-mechanical analogue 
as the uncertainty principle, can be applied for socio-economic processes.  

Nowadays Heisenberg uncertainty principle is one of the cornerstones of quantum mechanics that 

deals rather with the uncertainty of quantum states [171, 173] than with the precision of 

measurements. Recent studies of uncertainty relations have been a topic of growing interest in such 
disciplines as quantum information and cryptography [17, 164]. 

The key concept of quantum physics (Heisenberg’s uncertainty principle) can be described as the 

following [108]: 

 
0

,
2

x
m

     (8.1) 

where x  and   standard deviations of position and momentum variables of a particle with 

mass 0m , and / 2h  , h  is Planck’s constant. Considering values x  and   to be measurable 

when their product reaches their minimum, according to equation (8.1) we derive 

 
0 ,

2
m

x 


 
 (8.2) 

i.e., the mass of the particle is taken via uncertainties of its position and momentum – time 
derivative of the same coordinate. 

The main characteristic of physical laws and their constants is that they remain invariant at least 
1110  years, while economic measurements are fundamentally relative, local in time, and the 

adequacy of the formalism used for their mathematical description should be revised each time as the 

states, tendencies, and perspectives of global, regional, and national economies change. Thus, 

continuous analysis and monitoring of stock indices, exchange rates, cryptocurrencies prices, spot 
prices, etc. become crucial.  

Evaluating corresponding “economic mass”, we suppose that 
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where K  is a number of time series with N  samples that lie on an equal minimal distance mint  

one from each other. Then, we normalize our samples taking a natural logarithm of each one-

dimensional trajectory of a certain “abstract particle”   ln ( )i n i nx t X t  to bring each series to the 

unified and non-dimensional representation. Then, registering its position after each time span mint , 

we estimate standard deviation of its position and momentum according to some time frame 

min , 1T N t N N N         . Accordingly, the “instantaneous” speed of thi  particle at nt  is 

defined as 

   1 1

min min

( ) ( ) ln ( ) ln ( )
,i n i n i n i n

i n

x t x t X t X t
t

t t
   

 
 

 (8.4) 

with variance 
ivD  and standard deviation 

ii D  . 

Keeping an analogy with log-returns, after some transformations, we can write an uncertainty ratio 

for this trajectory [185]: 

   2
2 2

1 , 1 ,

min

1
ln ( ) ln ( ) ln ( ) ln ( ) ,i n i n n N i n i n n N

i

h
X t X t X t X t

t m
         


 (8.5) 

where im - economic “mass” of an thi  series, and h is an economic Planck’s constant. 

Presented economic Planck’s constant, unlike its physical analogue, may vary with different 

historical periods, averaging windows, and particular time series. 

In recent research [20, 23, 183, 186, 187], the economic mass was tested as an indicator of crashes 
and critical events on stock, crypto and sustainability data. Here, we apply the model for the oil prices. 

During crashes and shocks economic mass noticeably decreases, indication about external changes in 

the market.  

Obviously, m  remains a good indicator-precursor even in this case. Value m  is considerably 

reduced before a special market condition. Thus the market becomes more volatile and prone to 

changes. 

 

Figure 9.1. Dynamics of measure m  for the oil price with the window size of 250 days and the step 

of 5 days. 

9.  Conclusions 

Definitely, the factors from within and outside of the oil market universe are going to evolve all of 
them. The great influence will go from incumbents and policymakers, as well as from its competitors 
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and ordinary users. Current mistrust on the part of the government may lead to the introduction of 

specific licensing requirements that may make these digital currencies less attractive. Similarly, the 

adaptation to them and acceptance of cryptocurrencies may lead to increasing demand for them. The 
current situation with coronavirus is of paramount importance and is of significant danger.  

From the literature overview, we have understood that shocks and crashes do not disappear without 

a trace, but will also affect the fate of individuals. Thus, in order to give reliable, powerful, and simple 
indicators-precursors that are able to minimize further losses as a result of changes, we addressed the 

reach arsenal of the theory of complexity and the methods of nonlinear dynamics that can identify 

special trajectories in the complex dynamics and classify them. Following our research, we obtain 

informational, (multi-) fractal, recurrent, derived from alpha-stable distribution, based on complex 
networks, and quantum measures of complexity.  

The obtained quantitative methods were applied to classified crashes of the oil market, where it was 

seen that these indicators can be used in order to protect yourself from the upcoming critical change. 
To draw some conclusions about its evolutions and factors that influence it, we pointed out the most 

influential critical changes in this market. The analysis of the oil market with the sliding (rolling or 

moving) window approach allowed us to draw some conclusions about its evolution and factors that 
influence it. Regarding empirical results, we have shown that some of the measures are very sensitive 

to the length of the sliding window and its time step. For example, if we consider two closest to each 

other events, a previous event that had much more volatility can have a great influence on the 

corresponding measure of complexity and spoil the identification of the next less influential, but 
important event. Thus, time localization is significant while calculating the measure of complexity. 

The less time localization and time step, the more corresponding changes are taken into account. For a 

much larger time window and its step, we can have less accurate estimations.  
It turned out that most of the chosen measures of complexity respond in advance to the 

corresponding changes of complexity in the crude oil market and can be used in the diagnostic 

processes. Such measures can be presented as indicators or even indicators-precursors of the 

approaching shock or crash.  
Relying on the information theory and its powerful toolkit, we emphasized four measures of 

complexity, such as the measure of Lempel-Ziv, classical Shannon entropy, and its three modifications 

(Approximate entropy, Permutation entropy and the entropy of diagonal line histogram, which 
methodology is based on recurrence quantification analysis). We referred to the complexity of the 

systems, how it was described in different studies, and what methods were applied to quantify its 

degree. Our results show that in the pre-shock or pre-crash period, the complexity of oil price starts to 
change, i.e., it starts to decrease, indicating that such events presented to be more predictable and 

corresponding patterns are more structured. Thus, the degree of predictability increases in times of 

such events.  

Along with information theory, we referred to the multifractal properties of the crude oil market. 
As it was obtained with multifractal detrended fluctuation analysis, the scaling exponents remain non-

linear, and the width of singularity spectrum changes in time that gives evidence that at different times 

(scales) oil time series exhibits more or less complex behavior, indicating that crude oil market 
exhibits multifractal properties. Applying the width of multifractality as an indicator of possible 

critical states we found that before the abnormal event, this measure starts to decrease that tell us that 

the series is expected to be more predictable and stable, while its dynamics after such events is 
increasing that present system to be more susceptible to fluctuations.   

We considered that chaotic events can be related to the fat-tails and better described with non-

Gaussian distributions, particularly, described by Lévy alpha-stable distribution and its four 

parameters. As it is still debatable whether the stable distribution is completely applicable or not, we 
addressed its group of stable parameters, and during tests, we emphasized that the characteristic 

parameters   and   are the best for serving as an indicator-precursor of possible shocks and crashes. 

Thus, is shown that such a complex system as the crude oil market, with growth and preferential 
attachments, is characterized by power-laws. 
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The analysis of the crude oil market with the measures from the recurrence quantification analysis 

revealed that its toolkit is suitable for distinguishing diverse market periods. Such measures as 

recurrence rate and determinism are presented to be great for detection of the periods of instability or 
relaxation.  

Moreover, we have demonstrated the possibility of studying the complex energy market within the 

network paradigm. The time series can be presented as an economic network (visibility graph and 
recurrence diagram) with a set of both spectral and topological characteristics, which are sensitive to 

the critical changes in the oil market.  

Addressing to quantum econophysics and its apparatus where appropriate measures of complexity 

were obtained. Such quantitative methods as the Heisenberg uncertainty approach have confirmed 
their effectiveness for studying the oil market. We found that economic “mass” is presented to be 

effective due to its robustness, computational efficiency, and simplicity. 

Apparently, the impact of the different shocks and crashes was reflected in the crude oil market, as 
well as the coronavirus pandemic and therefore, the dynamics of past events, as well as of the 

subsequent could be identified in advance using the appropriate indicators of the theory of complexity. 

In our further studies, we are going to aim our view on exploring and analyzing other methods from 
the econophysics as the random matrix theory or the theory of chaos. Moreover, the research in the 

field of artificial intelligence, machine, and deep learning does not remain without attention. 
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