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Abstract 

The features of the complexity concept in social and economic 
systems. It is shown that the economic paradigm of complexity 
theory is an alternative in volatile dynamics of the global economy. 
Information and multiscale measures of complexity are used to 
analyze comparative dynamic complexity of systems in the current 
global financial crisis. 
Key words: complex systems, algorithmic complexity, Lempel-Ziv 
estimation, multiscalіng, multiscale entropy  
 

Introduction. In the time of globalization life becomes more 
complex and unpredictable. Chaos, order, and self-organization 
both in nature and society emerge according to the laws of complex 
dynamic systems. Complex dynamic systems are already 
successfully investigated in natural and technical sciences, starting 
from atomic and molecule systems in physics and chemistry to 
cellular organisms and ecologic systems in biology and neural 
networks studied by brain theories, social and computer networks. 
Nowadays the peculiarities of applying complex systems theory to 
economic and social sciences are widely discussed.  

It is worth noting that complexity problems have started to 
attract significant attention at the end of the XX – the beginning of 
the XXI century. Outstanding natural scientists, Nobel prize 
laureates (I. Prigogine, M. Gell-Mann, P. Anderson) as well as 
mathematicians A. Kolmogorov, G. Chaitin, M. Li [1-6] have 
created a number of fundamental works in this field. Genius 
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American astrophysicist Stephen Hawking called 21st century a 
century of complexity.  

There is no single definition of complexity of the system. 
Having announced the start of the new monograph series 
(«Springer: Complexity. Understanding complex systems») in 
2009, «Springer» has defined complexity in the following way: 
«Complex systems are the ones that consist of multiple interacting 
agents able to produce new qualities on the level of macroscopic 
collective behavior, which displays itself in spontaneous yet 
noticeable temporal spatial or functional structures» [7]. Apart from 
that, the following concepts and instruments have been developed: 
dynamic systems, nonlinear dynamics, instabilities, catastrophes, 
stochastic processes, determined chaos, self-organization, 
turbulence theory, graphs and networks, cellular automatons, 
adaptive systems, genetic algorithms, computer intellect etc.  

2. Complexity economics. Complexity measures. For the past 
10-15 years economic science has been going through the change of 
the dominant paradigm and, according to a lot of authoritative 
economists, both theorists and practitioners [8-13], still remains in a 
certain «bifurcation point», which will be left when it becomes 
qualitatively different. As noted by Eric Beinhocker we witness the 
transition «from traditional to the complexity economics»[13]. In 
many ways it is caused by the achievements in different fields of 
fundamental and applied sciences, which in the past three decades 
have disproved one of the major postulates of the classic economic 
theory stating rational behavior of economic agents.  

Famous Ukrainian economist A. Galchinsky considers it to be 
the time of «… methodological renewal of economic theory – 
creative mastering of conceptual postulates of functioning and 
development created by applied sciences (physics and 
mathematics)» [10]. According to Galchinsky it is the methodology 
of complex systems that provides the basis for detailed 
consideration of the problem of inter-disciplinary connections of 
economic theory with other social and natural sciences, particularly 
the problem of scientific synthesis, which gains importance in 
modern scientific process [11].  

There are different approaches to defining the specifics of 
complexity. All of them are emphasize the complexity of structure, 
interdependence, and interaction of different components, 
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functioning within the system. «Complexity, - write M. Zgurovsky 
and N. Pankratova, - is a common quality of a single multitude of 
different objects, which are structurally interconnected, functionally 
interdependent and interact with each other...» [12]. 

It is important to take into account that changing the emphasis 
from simple to complex is not simply an establishment of a certain 
scientific paradigm. According to I. Prigogine it is about the 
scientific revolution in the investigation of modern world that don’t 
restrain the perspective by «molecules, biological or social 
systems». 

«Complexity economics» has not become a fully distinguished 
scientific discipline – it is more of a field of interdisciplinary 
research including aspects of behavioral economics, imitational 
modeling, chaos theory as well as ideas, derived from physics, 
biology, anthropology, cognitive psychology and other natural and 
humanity science disciplines.  

Thus, the task implies the essential reconstruction of existing 
methodological mechanisms rather than correcting them. The afore-
mentioned reconstruction causes deep breaches in the research 
methods, disabling current principles of scientific cognition: old 
methodological canons don’t work anymore, while the new ones 
don’t work yet - they have not been systematically formed. 
Essential challenges of modern scientific process, that cause critical 
events in the field of scientific research, including economic 
analysis theory, have to be considered in the corresponding context. 
Complex system methodology contains wide potential abilities to 
solve them.  

Since modeling processes and using quantitative methods in 
economics imply measuring procedures, it is important to pay 
certain attention to complexity measures. I. Prigogine states that the 
notions of simplicity and complexity become relative in the 
pluralism of description languages [4], which causes multiple 
approaches to quantitative description of the idea of the complexity 
phenomenon. Therefore we proceed with the investigation of 
evident systems complexity using modern methods of quantitative 
analysis.  

In this work we consider two of the most popular information 
complexity measures: Kolmogorov complexity and one of the 
entropies, particularly the sample entropy. Let us also investigate 
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the change of the afore-mentioned measures on different time 
scales. 

Test signals of different nature and complexity as well as stock 
indices of developed countries (German index DAX and the US one 
S&P 500 – http://finance.yahoo.com) and Ukraine (Ukraine’s Stock 
Exchange index UX – www.ux.ua) have been chosen as research 
objects.  

3. Information complexity measures. The most well-known 
and simple of information measures is the Kolmogorov complexity. 
The notion of Kolmogorov complexity has appeared in 1960s at the 
turn of algorithm, information and probability theories.  

The A. Kolmogorov’s idea [14], implied that to measure the 
amount of information in individual finite objects (not in random 
quantities as it was in Shannon’s information theory). It turned out 
to be possible (although only with limited accuracy). Kolmogorov 
proposed to measure the amount of information in finite objects 
using the algorithm theory, defining object complexity as the 
minimal length of the program that generates this object. This 
definition became the basis of the algorithmic information theory as 
well as algorithmic probability theory: the object is considered to be 
random if it’s complexity is close to maximal.  

Therefore, according to Kolmogorov, object (e.g. a text – a 
symbol sequence) complexity is the length of the minimal program 
which outputs this text, and entropy is complexity divided by the 
length of this text. Unfortunately, this definition is purely 
theoretical. There is no precise way to define this program. 
However there are algorithms that actually attempt to calculate 
Kolmogorov complexity and entropy.  

4. Evaluating Kolmogorov complexity using the Lempel-
Ziv scheme. A. Lempel and J. Ziv suggested the following scheme 

of division words into sub-words. Indicate with r
lx  the word, 

consisting of letters of the word ini aax ...1 , staring from l  and 

finishing with r , i.e. iril
r
l aax ... . Let us divide the word 

nn Ax 1  into sub-words mii ,...,1,   according to the following 

rule. Let the beginning of the word nx1  be already divided into sub-

words, i.e. be a concatenation of the sub-words 121 ... i  and 
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n
lii

n xx 111 ...   . We choose the following sub-word 11 il
lii x  so 

that the word 21il
lix  is the longest prefix of the word n

lix  and is 

included into it as the sub-word in the word 31il
lix , i.e. 

i

ii

ii j
dl

dli ax 21 

 , where ii ld  . Every sub-word i  is defined by 

three numbers ),( 1 iiii jlld  .  

For example, the word a1a2a2a1a2a1a1a2a1a2a1a2 can be 
divided into sub-words a1, a2a2a1, a2a1a1, a2a1a2a1a2 and coded 
by the sequence of number triplets (1, 1, 1), (2, 1, 2), (1, 2, 1), (2, 3, 
1), (4, 5, 2). 

The Lempel-Ziv scheme generates the program LZP , which 

recreates the word from the sequence of triplets. In order to 
unambiguously divide binary codes of natural numbers, the first 
number of each triplet should be written as a binary using equally 

illog  bits, the second one can be coded in the optional prefix code 

of natural numbers, writing down the third one requires only Alog  

bits.  
Let us determine the Lempel-Ziv complexity (LZC) for a time 

series of daily data of a stock market index. To research the LZC 
dynamics and compare it with other stock markets, we will 
calculate this complexity measure for a sub-sequence of a fixed size 
(window). To do this we will calculate logarithmic returns and turn 
them into a sequence of bits. We can give a number of 
differentiable states (number language). Therefore, for two different 
states we have 0, 1, for three – 0,1,2 etc. In case of three states, a 
certain b  threshold is given (e.g. in points of standard deviation of 
normalized returns) and ret  states are coded in the following 
manner:  

















bret

bretb

bret

ret

,2

,1

,0

. 

The algorithm executes two operations:  
- adds a new bit to the existing sequence;  
- copies the previously formed sequence.  
Algorithmic complexity is the number of such operations, 
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required to create a given sequence. In other words, Lempel-Ziv 
complexity measures the number of different sub-lines and the 
speed of them repeating during the original time series. 

For a random series of the n  length algorithmic complexity is 

calculated using the formula )log(/ nnLZCr  . In that case relative 

algorithmic complexity is found as a relation of the received 
complexity to the random one: rLZCLZCLZC / .  

On fig. 1a Lempel-Ziv algorithmic complexity is calculated for 
test signals: periodic function xsin , white (wnoise) and flicker 
(fnoise) noises and a complex biological signal –ECG fragment 
(ECG).  

 

 
Fig. 1. а) Dynamics of algorithmic complexity for binary coded elements 
of different signal fragments of 1000 points, window size 250 points;  
b) relative dynamics of daily data of German stock index (dax) and 
normalized returns (ret), calculated to define the b parameter 

 
In case of test signals and three states an evidently unnatural 

result is obtained: flicker and white noises depict the same level of 
complexity, while the complexity of an ECG-signal is almost the 
same as the one peculiar to a simple periodical signal. Obviously, 
periodic signal is the simplest one, the next being white noise and 
after that flicker noise. Biologic signal is also complex and contains 
correlations [8,9].  

It is worth noting that Kolmogorov complexity rather measures 
the level of chaos in the system, leaving the «inner structures» of 
the object without any attention. Therefore, algorithmic complexity 
is unable to describe the complexity of real signals. Complex 
signals depict peculiar complexity on different spatial and temporal 
scales, that is have scale invariable characteristics [8], produce 
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power distribution laws [9], which are responsible for realization of 
the less expected events (crises, shocks etc.).  

In order to overcome such difficulties multiscale and fractal 
methods which will be considered in the following chapter.  

5. Multiscale entropy. In the practical realization of entropy 
calculations for noisy time series analysis an Approximate Entropy 
(ApEn) or Sample Entropy (SampEn) evaluation algorithm was 
used. Since the detailed descriptions of both algorithms can be 
found in [15], we will provide short notes as to the terms of their 
execution. Since SampEn is more accurate the following 
calculations will be conducted for it or on its basis. 

The inputs for SampEn include a time series and two 
parameters, m and r. m characterizes the embedding dimension, 
while r is a threshold criterion which allows us to consider two 
arbitrary vectors as the same («filtering factor»). We consider the 

subsequences of time series elements NS , consisting of m numbers, 

taken starting from number i, and called vectors  ipm .  

For mP  of all vectors of m length it is possible to calculate: 

   
1


mN

rn
rC im

im , 

where  rnim  is the number of vectors in mP , similar to vector 

 ipm  (taking into account the chosen similarity criterion r). 

 rCim  is a part of vectors of m length, similar to a vector of the 

same length with elements starting from number i. For this time 

series values  rCim  are calculated for every vector in mP , as well 

as the mean value  rCm , which shows the distribution of similar 

vectors of m length in NS . Approximate Entropy for time series 

NS  using vectors of m length and similarity criterion r are defined 

using the formula: 

   
 












 rC

rC
rmS

m

m
N

1

ln,,SampEn , 

that is, as a natural logarithm of vector of m length repeats relation 
to vectors of m+1 repeating. 

Let us highlight that SampEn is functionally dependable on one 
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step of differentiation showing the level of uncertainty for the next 
count predicted with the process history. In other words, this kind 
of entropy describes the level of information loss on every next 
step. This is the reason why such parameters can be used to analyze 
events that are multiscale in their essence.  

To overcome such difficulties it is suggested to use Multiscale 
Entropy Analysis (MSE), where SampEn is used as a measure of 
entropy on different scales of initial time series decomposition.  

 MSE includes two consequently executed procedures: 1) 
coarse graining of the initial time series – averaging the data on 
non-intersecting segments, which size (averaging size) was 
increased by one at each transition to the next scale; 2) calculating 
SampEn on every scale.  

The coarse graining process implies averaging consequent 
series counts within non-intersecting windows, which size  – 
increases at each transition to the next scale (fig. 2). Every element 

of the «grained» time series )(
jy  corresponds to the equation:  













j

ji
ij xy
1)1(

1
, /1 Nj  , 

where   characterizes the scale factor.  
The length of every «granulated» series depends on the size of 

the window and equals /N . If the scale equals 1 «granulated» 
series is simply identical to the initial one. For each obtained 
«granulated» time series SampEn was calculated as the scale 
function.  

As you can see on scale 1 SampEn is the highest for white 
noise. But starting from scales over 7-8, the ECG signal of a 
healthy person becomes the most complex. The stock market signal 
complexity is comparable to the complexity of a biological signal. 
For three states (fig. 3b) multiscale character of the entropy is 
evident in case of stock markets. In case of a shuffled series (sp sh) 
entropy quickly decreases, which is the evidence of the complexity 
loss.  

On fig. 3 we can see the results of the MSE-analysis of 
different signals.  

Let us introduce window complexity measures that are 
determined as a sum of LZC or MSEC values on all scales for each 
window (MSE Complexity) 
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Fig.2. Schematic illustration of the coarse-graining process of initial time 
series for scales 2 and 3  
 

 
  a)    b) 
Fig. 3. а) Dependence of multiscale entropy on scale for binary coded 
signals; b) multiscale entropy dynamics for German (dax), US (sp) and 
Ukrainian (ux) stock indices  

 
On figure 4 typical dependencies of multiscale complexity 

measures are displayed using DAX stock index data of 1992-2012.  
As it is seen from fig. 3а, Lempel-Ziv complexity measure is 

characterized by rather low values during non-crisis periods. During 
pre-crisis periods, when the returns increase (volatility 
clusterization), LZC quickly rises as well. Multiscale MSEC 
measure, on the contrary, rises before crises and decreases during 
the crisis (fig. 3b). Apart from that, the introduced complexity 
measures: depict universal temporal behavior for different stock 
markets.  
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  а)    b) 
Fig. 4. Multiscale complexity measures in time: а) Lempel-Ziv; b) MSE. 
Window size equaled 500 days, step 1, maximal scale 20. The initial series 
(dax) and its returns (r) are also displayed 
 

6. Conclusions and research perspectives. Thus, two new 
multiscale measures of economic complexity have been introduced 
and applied within the new paradigm – multiscale Lempel-Ziv 
measures and sample entropies. It is displayed that during crisis 
afore-mentioned measures change in a certain manner and are, 
therefore, possible to use as forerunning indicators of critical 
events. 

Subsequent investigations will be directed at the formalization 
of complexity measures of network structures, which are the most 
common kind of a structural organization of complex socio-
economic systems.  
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